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Overview

Summary

This thesis reports numerical and analytical results on the floatation and capillary

interaction of granular–sized objects at liquid–fluid interfaces. Such objects create

deformations at the liquid surfaces which result in their interaction with each

other. It has been experimentally shown that this effect can be used for self-

assembly of ordered structures, and there are examples in the natural world too.

The deformation created by a solid object at a liquid interface is governed

by the Laplace-Young equation and appropriate boundary conditions. This is a

nonlinear differential equation which is hard in general to solve analytically, and

only approximate solutions exist for most of the interesting cases. We develop

a new numerical solution to determine the shape of a liquid interface in the

vicinity of multiple solid objects using the hp–Meshless Cloud method, which is

a meshfree finite difference method. This solves the nonlinear Laplace-Young

equation without any approximations.

First a system is considered where circular cylinders are immersed in a liquid.

The meniscus shape is determined, and the force of interaction between a pair of

cylinders is calculated as a function of the distance between them. The results

are compared with previously published asymptotic solutions and experimental

results. When the cylinders are sufficiently far apart, the experimental results

agree with both the numerical and asymptotic results. However, as the cylinders

move closer, the asymptotic solution is unable to explain the experimental results

because this solution is valid only in regions with small meniscus slopes. In

contrast, the numerical solution is able to accurately explain the experimental

results at all distance ranges.
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Overview

The numerical solution is further extended to solve for two elliptical cylinders

at a liquid interface. Additionally, a new analytical solution is also developed for

this problem. For the case of an isolated cylinder, this analytical solution is able

to predict the same contact line shapes and meniscus profiles as the numerical

solution. Both the solutions show that the force of attraction between a pair

of elliptical cylinders is larger when they are in the tip–to–tip orientation, and

smaller in the side–to–side orientation. The difference between the forces in the

two orientations diminishes at large inter–cylinder separations. It is also shown

that the meniscus far away from an elliptical cylinder is same as one created by

a circular cylinder with perimeter equal to that of the elliptical cylinder.

The numerical solution is further developed to solve for multiple floating

spheres. This is a complicated condition compared to the vertical cylinders be-

cause the vertical locations of the spheres and the horizontal projections of the

three–phase contact lines are not known a priori. A new algorithm is developed

to simultaneously satisfy the force balance, Laplace–Young equation and the ge-

ometric properties of the spheres. This shows that floating and sinking of a pair

of spheres can depend on their relative positions. An unexpected and new result

is obtained: at an intermediate inter–particle distance range, a sphere that would

sink in isolation can float as a part of a pair or a cluster. A simple and new semi–

analytical solution is also developed, which also predicts the same behaviour.

Additionally, the numerical solution predicts that a sphere that would float in

isolation would sink as a part of a pair at very small inter-particle distances.

This numerical solution is then extended to determine the force of attraction

between pairs of floating spheres. This is studied experimentally as well, by

tracking the movement of particles at a liquid interface. Asymptotic solutions

have previously been published for this problem. The numerical solution shows

that the force deviates from the predictions of these asymptotic expressions when

the density of the spheres is high. At small densities such as those used in the

experiments, the asymptotic solutions correctly predict the force of attraction.
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Overview

Structure of the thesis

Different types of capillary interactions are introduced in Chapter 1, with a review

of previous experimental and theoretical studies in this discipline. Chapter 2

presents the theoretical fundamentals governing the capillary interactions, and

describes the derivation of the basic equations. This chapter also describes the

numerical method that I use to solve the nonlinear Laplace–Young equation.

In Chapter 3, I provide the numerically obtained results for the force of cap-

illary interaction between pairs of vertical circular cylinders at a liquid interface.

These results are compared with experimental results and asymptotic solutions

previously published by other groups.

Chapter 4 provides an extension of the numerical method to determine the

capillary interaction between elliptical cylinders. A new asymptotic solution is

also developed for this problem.

Chapter 5 presents a method for solving a more complicated problem: the

capillary interaction between floating spheres. Using this solution, it is shown that

the floating and sinking behaviour of a sphere can be affected by the presence of

other spheres in its vicinity. A new “semi–analytical” solution that approximates

this behaviour is also developed.

Using the numerical solution presented in Chapter 5, the force of attraction

between floating spheres is determined in Chapter 6. This chapter also presents

experiments where the attraction between floating particles was studied.

In Chapter 7, conclusions are made summarizing the major results. It also

reviews a range of future research which can be carried out based on the results

and metods presented in this thesis.
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Chapter 1

Motivation and background

A solid object at an otherwise planar liquid–fluid interface can produce interfacial

deformations due to its boundary conditions, i.e. by imposing height variations

along a three-phase contact line or by imposing a non-zero derivative condition

on the interface along this contact line. A deformed interface can exert forces,

resulting in “capillary interactions” between such objects (Binks and Horozov,

2006). These interactions are ubiquitous and strong compared to interactions

due to electrostatic and thermal effects.

The work presented in this thesis deals with capillary interactions between

objects well above the colloidal scale, in the granular regime. Since these objects

are larger than tens of micrometers, they are not significantly affected by the

thermal and electrostatic forces. However, they are still small compared to the

capillary length, the length scale in which the interfacial deformations take effect.

(For an air–water interface, this value is approximately 2.7 mm). Objects in

this size range are predominantly affected by capillary forces when placed at a

liquid–fluid interface.

1.1 Capillary interactions in the natural world

Capillary forces result in a wide range of remarkable phenomena in nature from

plants and animals to inorganic systems. The most popular example is the insects

known as “water striders” which are capable of walking on water supporting

1



1. Motivation and background

(b)(a)

Figure 1.1: Objects supported by the surface tension of water interact due to
capillary forces and tend to produce aggregates. The figure shows two examples
I investigated: (a) is an aggregate produced by growing duckweed (diameter
≈ 2 mm), and (b) is produced by Pliolite rubber particles (diameter ≈ 0.3 mm).

their weight by means of surface tension (Gao and Jiang, 2004). Objects thus

supported by means of surface tension at a liquid–fluid interface create interfacial

deformations, which may result in “capillary attraction” forces between them if

they are in the vicinity of each other. An example is duckweed, which is a small

plant that grows on surfaces of ponds during summer, and aggregates to produce

clusters that can eventually grow to cover the whole surface of a pond. This

effect was reported by Miall (1898), and figure 1.1(a) shows such an aggregate

produced by duckweed growing in the laboratory. Capillary–induced aggregation

processes also have impacts for bigger plants that disperse their seeds by water,

i.e. hydrochory. Chambert and James (2008) showed that seeds with pointed ends

can get attached to vertical surfaces, such as plant stems, because of capillary

attraction. This is also true in the animal kingdom, where mosquitoes lay their

eggs as interfacial aggregates whose form depend on the species (Christophers,

1945; Hinton, 1968; Saliternik, 1942). Using synthetic particles of a shape similar

to mosquito eggs, Loudet and Pouligny (2011) studied the capillary forces that

lead to this aggregation process. It is thought that this brings an advantage to the

mosquito eggs because upon the aggregation, they can then collectively attach to

a stable structure and remain safe.

2



1.2. Studies on capillary aggregation and self–assembly

1.2 Studies on capillary aggregation and self–

assembly

In addition to natural objects, man–made granular–sized objects also show excit-

ing aggregation behaviour. Figure 1.1(b) is such a cluster produced by capillary

interaction of rough Pliolite rubber particles on water. Hórvölgyi et al. (1991)

studied such aggregates produced by glass beads on water and observed that the

clusters undergo further secondary packing after aggregation. They also reported

that smaller aggregates demonstrated fractal properties while larger aggregates

crossed over to non-fractal nature.

Sheets of these aggregates are known as “particle rafts” and their mechanical

properties have been studied (see Cicuta and Vella (2009), for example) by com-

pressing them in a Langmuir trough. They found that the stress profile in this

two-dimensional particle monolayer was analogous to that of three–dimensional

granular systems. Berhanu and Kudrolli (2010) employed a different experimen-

tal procedure for compressing the particle aggregates by moving them downwards

through a conical funnel, and analyzed how the heterogeneity of the clusters var-

ied.

The process of capillary aggregation in a circular domain was numerically

and analytically studied by Bleibel et al. (2011). When the range of interaction

between pairs of particles was large compared to the domain size, the whole sys-

tem aggregated into one single cluster. At smaller ranges of interaction, they

produced ring–like pre–clusters which then moved towards the centre. For capil-

lary forces, this range of interaction is equivalent to the capillary length, which

will be described in section 2.1.1 ( Eq. 2.10). Lukaschuk et al. (2006) analyzed

the process of capillary aggregation of particles in the presence of surface waves

and reported that the particles preferentially moved to nodes or antinodes of the

waves. Han and Kim (2012) used dumbbell–shaped plates on the surface of water

to produce clusters and studied how the packing behavior varied with the shape

of the plates.

In contrast to random aggregates mentioned above, one can tune the geometry

and surface properties of the individual “building blocks” to enable capillary self

3



1. Motivation and background

assembly and produce ordered structures. Hosokawa et al. (1996) first used this

method to produce thin film micro–structures by self–assembly of small objects

floating on water. In addition to attractive capillary forces, they also utilized

repulsive capillary forces. This was achieved by having some objects flat, which

created downwards deformations of the liquid surface, and having some objects

curled–up at the edges to create upwards surface deformations. Further selfa–

ssembly experiments were carried out by Bowden et al. (1997, 1999, 2000) where

hexagonal building blocks with hydrophilic and hydrophobic faces were used to

produce ordered structures.

Capillary forces can also be utilized for self-assembly in three dimensions.

Clark et al. (2001) used metallic polyhedral plates with specifically designed hy-

drophobic and hydrophilic faces. A thermally curing hydrophobic adhesive was

added to the hydrophobic sides, and the plates were stirred inside water. The

adhesive binded the hydrophobic faces by means of capillary forces until it was

cured to produce a stable structure. Clark et al. (2002) introduced an improve-

ment to this process by using a template to control the size and shape of the final

structures produced. The templates were circular metal plates with internal cav-

ities, in which the building blocks assembled. Such capillary-based self assembly

methods were reviewed by (Mastrangeli et al., 2009; Syms et al., 2003). Exam-

ples of structures produced by such processes include assemblies of micromirrors

(Srinivasan et al., 2002), inductors (Scott et al., 2004), and LEDs (Xiong et al.,

2003).

1.3 Different types of capillary interactions

Understanding the forces of capillary interaction is crucial for the study of the

above phenomena. Kralchevsky and Nagayama (2000) and Kralchevsky and

Denkov (2001) classified the capillary interaction forces into several categories,

which are schematically shown in figure 1.2. The two main classes of forces are

normal capillary forces and lateral capillary forces. For a pair of objects at a

liquid–fluid interfaces, a normal capillary force acts normal to the contact line

and a lateral capillary force acts approximately along the contact line. A review

on normal capillary forces can be found in Butt and Kappl (2009). These forces

4



1.3. Different types of capillary interactions

Capillary Interactions

Lateral interactions
Force of interaction is lateral to the
contact line

Flotation interactions
Interfacial deformations result from weight and
buoyancy of the particles

Immersion interactions
Interfacial deformations result from imposed
contact angle or contact line conditions

Infinite menisci
The interface decays to undisturbed level at infinity

Finite menisci
The interface decays to undisturbed level at a finite
distance. (Observed in particles immersed in thin liquid
films)

Capillary multipoles
Interfacial deformations induced by undulated contact lines

Normal interactions
Force of interaction is normal to the
contact line

Figure 1.2: Types of capillary interactions, as classified by Kralchevsky and Na-
gayama (2000) and Kralchevsky and Denkov (2001). The analyses in this thesis
focus on lateral capillary interactions: in particular, flotation interactions and
infinite menisci immersion interactions.

result from “liquid bridges” that cause adhesion between solid particles, as shown

in figure 1.3. This is commonly experienced in building sand castles using wet

sand. Industrially, this is a crucial aspect to be taken care of, in avoiding wetting

and lumping of hygroscopic powders such as sugar and fertilizer by condensation

of atmospheric moisture. Non–volatile liquids can also produce normal capillary

forces by forming a thin film on each particle, and then interconnecting many

particles. An example is lubricants on bearing balls. In addition to particles in

air, particles suspended in a liquid can also be affected by normal capillary forces.

In this case, a different liquid which is miscible with the first liquid can create

liquid bridges among the particles which then cause aggregation of particles that

5



1. Motivation and background

(b)(a)

Figure 1.3: A liquid can create “capillary bridges” among solid particles that
result in forces of adhesion. (a) is a fluorescence microscopic image showing cap-
illary bridges created by water linking glass spheres with diameter ≈ 100 µm.
(Reprinted from Herminghaus (2005)). (b) shows a sand castle where the grains
of sand are held together by capillary forces resulting from water bridges inter-
connecting them. (Reprinted from Schiffer (2005))

come close to each other due to Brownian motion (Bloomquist and Shutt, 1940;

Butt and Kappl, 2009).

The forces of capillary interaction analyzed in this thesis are lateral capil-

lary interactions, which are divided into flotation forces and immersion forces

(Kralchevsky and Denkov, 2001; Kralchevsky and Nagayama, 2000). For a parti-

cle floating at a liquid–fluid interface, the weight needs to be balanced by buoy-

ancy and surface tension. The interfacial deformation resulting from this require-

ment gives rise to lateral capillary forces. The earliest study of these forces was

by Nicolson (1949) where the forces of interaction between bubbles at a liquid

interface was analytically calculated using the approximation of linear superpo-

sition. Using the same approximation, Chan et al. (1981) developed asymptotic

expressions for the forces of attraction between a pair of spherical particles and

between a pair of infinitely long horizontal cylinders floating at a liquid–fluid in-

terface. Paunov et al. (1993) developed another analytical solution valid for the

attraction between spheres that are small in comparison to the capillary length.

They did not use the linear superposition approximation, and solved the prob-

lem in bipolar coordinates instead, assuming small meniscus slopes. At large

6



1.3. Different types of capillary interactions

inter-particle distances, their result reduces to the one developed by Chan et al.

(1981).

Flotation forces have been experimentally studied by Dalbe et al. (2011);

Vassileva et al. (2005). They measured the relative velocities of pairs of float-

ing spherical particles by means of particle tracking, and compared this with an

analytical expression obtained using the asymptotic result for the capillary attrac-

tion (Chan et al., 1981) and the hydrodynamic interaction between the spheres

(Batchelor, 1976).

Knowing whether a particle will float or sink under a given set of conditions is

also important. Vella et al. (2006a) studied this analytically and experimentally

for cylinders and numerically for spheres, and determined the maximum load that

these objects can support without sinking. Further experimental studies of this

problem were done by Extrand and Moon (2009); Kim et al. (2010). While these

studies were for isolated floating objects, the floating conditions may be different

when a pair of objects are interacting, as shown by Vella et al. (2006b) for a pair

of infinitely long horizontal cylinders. Their numerical solution showed that it is

possible for cylinders that float at large separations to sink as they approach one

another.

In contrast to flotation forces resulting from the vertical force balance require-

ment, capillary immersion forces result from the contact angles or fixed contact

lines imposed by objects at liquid–fluid interfaces. An example is the interaction

between a pair of vertical cylinders. In the limit of small meniscus deformations,

Kralchevsky et al. (1993) analytically calculated the force of attraction between

these objects and Ceco et al. (1996); Velev et al. (1993) experimentally measured

the force between pairs of glass cylinders at a liquid interface by means of a

torsion microbalance. Immersion forces can also act between spheres resting on

a flat solid surface partially covered with a thin liquid layer. Maenosono et al.

(1999) analyzed the relative movement of such spheres using video microscopy,

and using the theoretical results for the capillary attraction by Kralchevsky and

Nagayama (1994), calculated the viscous drag force which counterbalanced this

capillary force. Capillary attraction and aggregation has also been observed be-

tween particles trapped in foam films that are much smaller in thickness (100

times thinner) compared to the size of the particles (Velikov et al., 1998). Gart
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1. Motivation and background

et al. (2011) developed a theoretical argument to show that in these cases, the

interfacial deformations decay to zero at a finite distance away from a particle,

and hence, these are called “finite meniscii” in contrast to usual menisci which

decay at infinity.

The particles can also be trapped in a curved liquid interface. Such systems are

industrially used in Pickering emulsions (Denkov et al., 1992; Pickering, 1907),

and can also occur in vesicles and biomembranes. The adsorbed particles can

change the shape of the interface and result in interactions. Kralchevsky et al.

(1995b) determined the interaction between particles trapped in a thin spherical

liquid film by numerically solving the linearized Laplace–Young equation, with

the particles imposing fixed contact angle conditions and fixed contact line con-

ditions separately. Capillary interactions can also occur between objects as small

as protein molecules in biomembranes. Although the weight of these molecules

are too small to create meniscus deformations, their inhomogeneous wetting con-

ditions can deform the interface. This was studied theoretically by Gil et al.

(1998); Kralchevsky et al. (1995a) and experimentally by Mansfield et al. (1999).

Zeng et al. (2012) theoretically studied capillary forces between spherical particles

trapped at anisotropically curved interfaces. These studies were in the parameter

range where the weight of the particles were negligible. The effect of the weight

may give rise to more interesting phenomena (Zeng et al., 2012).

Paunov et al. (1992) theoretically showed that a special type of interaction

can occur between a vertical wall and a partially immersed spherical particle or a

vertical cylinder. If the contact angle of the wall is 90o forcing the meniscus slope

to be zero in the direction normal to it, the particle feels the same attractive force

as if it was interacting with its mirror image with respect to the wall. These forces

are hence called “capillary image forces”. Kralchevsky et al. (1994) extended the

theory of image forces to the interaction between a floating particle and a vertical

wall, and proved that repulsive forces act if the wall has a flat contact line with

zero height. They also showed that stable equilibrium positions of the sphere can

exist at finite distances from the wall, which was also experimentally realized by

Velev et al. (1994).

If the contact line around a particle is undulated, this can lead to capillary

multipoles. Examples are rough, heterogeneous or non-spherical particles at a

8



1.3. Different types of capillary interactions

flat liquid interface, and spherical particles at a curved interface. An early exam-

ple for the study on this discipline is Lucassen (1992). Danov and Kralchevsky

(2010); Lucassen (1992); Stamou et al. (2000) theoretically studied the force of

attraction between capillary multipoles. The force between a pair of capillary

multipoles generally depends on the mutual orientation and can result in rota-

tion and alignment of the two particles. When capillary multipoles aggregate,

they can produce patterns that depend on the order of the multipole. Particles

with different orders of the multipole cannot produce a single lattice upon aggre-

gation, and results in phase separation (Kralchevsky and Denkov, 2001). Because

of the direction-dependent nature, capillary multipoles can be used effectively for

the self assembly of ordered structures (Bowden et al., 1997, 1999).

Most of the theoretical studies mentioned above analyze the capillary inter-

actions by solving the linearized Laplace–Young equation, which is valid only at

small interfacial deformations, and often assume linear superposition of meniscii

created by individual objects. In contrast, I present accurate numerical solutions

for the nonlinear Laplace–Young equation without using any such approxima-

tions. The following chapters demonstrate that the limitations of existing solu-

tions, and new phenomena discovered using the new numerical solution. I also

derive simpler analytical solutions for two problems, independently verifying the

findings of the numerical solution. The thesis also presents experiments that were

carried out to determine the forces of capillary interaction.
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Chapter 2

Fundamentals of interface shapes

In this chapter, I introduce the Laplace–Young equation which governs the shape

of a liquid–fluid interface. I then discuss boundary conditions for solving of the

Laplace–Young equation in situations of interest, and the vertical force balance

that enables objects to remain floating at a liquid–fluid interface.

2.1 Shape of a liquid–fluid interface

2.1.1 Deriving the Laplace–Young equation

The shape of a liquid–fluid interface is governed by the Laplace–Young equation.

In this section we reproduce the derivation of this equation (taken from Butt

et al. (2003)), and then express it in Cartesian coordinates. Here the Laplace–

Young equation is derived using the force balance on a small part of a liquid–fluid

interface as shown in figure 2.1. This equation can alternatively be derived using

a thermodynamic approach, see for example Roura (2005).

In figure 2.1, X is a point on the interface. The curve ACBD is the set of

points located at a distance S from the point X. (This is same as the intersection

between the interface and a sphere with radius S is drawn centred on X). It is

assumed that the interfacial region bounded by this curve is sufficiently small

that the curvature in it is constant. AXB and CXD are two perpendicular

lines placed on the interface.

This interfacial part is affected by two forces: force due to the surface tension

11



2. Fundamentals of interface shapes

S liquid l

fluid f

R1

A

C

D B
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α

X

R1

R2

R2

Figure 2.1: The Laplace–Young equation can be derived considering the force
balance on the part of a liquid–fluid interface as shown here.

acting downwards, and force due to the pressure acting upwards. To achieve

equilibrium, these two forces need to balance each other. If γ is the surface

tension, the force of surface tension acting on a small line segment with length

dl around B is γ dl, as marked in the figure. Hence the downward component

of this force is γ dl sinα. For small sections, i.e. S ≪ R1, R2,

sinα ≈ S

R1

, (2.1)

with R1 is the radius of curvature along AXB. Then the vertical force is

γ
S

R1

dl. (2.2)

The sum of the vertical components of the force at points A,B,C and D along

line segments of length dl is

dF = 2Sγ

(
1

R1

+
1

R2

)
dl. (2.3)

We know
1

R1

+
1

R2

= −κ (2.4)

where κ is the mean curvature which is independent of the orientations of AXB

12



2.1. Shape of a liquid–fluid interface

and BXD as long as they are orthogonal. κ is defined to be positive if the

interface is convex towards the liquid. Combining Eq. (2.3) with Eq. (2.4) and

integrating along one quadrant of the borderline gives the total downward surface

tension force to be

Fγ = −πS2γκ. (2.5)

Next we consider the force acting on the concave side of the interface due to

the pressure difference ∆P = Pliquid−Pfluid between the two sides of the interface.

This force is given by

Fhp = πS2∆P. (2.6)

For the interface is in equilibrium, Fγ = Fhp, from which we deduce the Laplace–

Young equation

∆P = −γκ. (2.7)

If the pressure difference is due to the density difference between the liquid and

fluid phases,

∆P = −ζg∆ρ, (2.8)

where ∆ρ = ρl−ρf with ρl and ρf are the densities of the liquid and fluid phases,

g is the acceleration due to gravity and ζ is the height of the interface from a point

where the pressure difference across the interface (or the curvature according to

Eq. 2.7) is zero. Substituting this into Eq. (2.7) gives

ζ = κ
γ

∆ρg
. (2.9)

Introducing the capillary length defined by

ℓc =

√
γ

∆ρg
, (2.10)

Eq. (2.9) may be written

ζ = κ ℓ2c . (2.11)

If the depth ζ is given as a function of x and y, which are Cartesian coordinates,

13



2. Fundamentals of interface shapes

the mean curvature (Pozrikidis, 2009) is given by

κ = −
ζxx
(
1 + ζ2y

)
+ ζyy (1 + ζ2x)− 2ζxyζxζy

2
(
1 + ζ2x + ζ2y

) 3
2

, (2.12)

where the subscripts denote derivatives with respect to x and y. This equation

can be converted to other coordinate systems by expressing the curvature in the

relevant coordinate systems (see Gray (1998), for example).

As described in section 1.3, there are several analytical solutions for the

Laplace–Young equation where the problem is simplified by linearisation so that

the interfacial deformation approximately satisfies:

ζ = ℓ2c ∇2ζ. (2.13)

This approximation is valid when the meniscus slopes are small:

∂ζ

∂x
≪ 1,

∂ζ

∂y
≪ 1. (2.14)

There are a limited number of asymptotic solutions where the fully nonlinear

Laplace–Young equation has been solved. An example is Lo (1983) where the

shape of the meniscus around a vertical cylinder with a radius very small com-

pared to the capillary length was solved. It is possible to solve the nonlinear

Laplace–Young equation numerically for more complex boundaries, as done by

Hill and Pozrikidis (2011); Pozrikidis (2010, 2011). However, there remains a wide

range of interesting problems that have not been solved using the full Laplace–

Young equation without using approximations such as Eq. (2.14). In this thesis,

I present new findings from such solutions.

2.1.2 Young’s law

It is common to solve the Laplace–Young equation subject to a contact angle

condition. This relies on the notion that the angle of contact for a given three–

phase system is constant. This is a result due to Young (1805) and reproduced

here based on an argument by Butt et al. (2003). For a more rigorous alternative
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2.1. Shape of a liquid–fluid interface
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Figure 2.2: Schematic of a liquid droplet resting on a solid plane, surrounded by
a fluid. Young’s law can be derived considering the change of Gibb’s free energy
resulting from an infinitesimal spreading of this drop.

derivation, see Roura and Fort (2004). This derivation is for a circular liquid

drop on a plane solid surface, surrounded by a fluid. Then the change of Gibbs

free energy (see Butt et al. (2003); Roura and Fort (2004), for example) resulting

from the drop spreading by an infinitesimal amount is considered. It is assumed

that the droplet is small enough that gravitational effects can be neglected, and

that the droplet is large enough so that the curvature is small and the effect of the

Laplace pressure on the Gibbs free energy is negligible. The droplet produces a

three-phase contact line, around which there are three types of interfacial tensions.

They are defined as γsl, γsf and γlf , and they are for the solid–liquid, solid–fluid

and liquid–fluid interfaces, respectively. Young’s law relates these surface tensions

to the contact angle θ at the three phase contact line, so that

γsl = γsf − γlf cos θ. (2.15)

The derivation of this equation is given in Appendix 2.A.
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2. Fundamentals of interface shapes

Figure 2.3: Schematic diagram of a pair of arbitrary objects at a liquid–fluid
interface. The contact angle is defined on a vertical plane only if the contact line
is flat. In general, it is defined on the plane containing vectors n and b. n is the
outward normal to the object surface and t is the tangent to the contact line. b
is the binormal to n and t. γ is tangent to the liquid–fluid interface.

2.1.3 Boundary conditions for the Laplace–Young equa-

tion

For a meniscus in contact with a solid object, the appropriate boundary condition

is a fixed contact angle θ. In a simple case like a droplet on a flat surface as

discussed in the previous section, θ is the angle with which the surface of the

droplet meets the solid surface. However, there are other cases where the contact

angle cannot be implemented in a simple manner. Figure (2.3) shows a pair of

solid bodies at a liquid–fluid interface, where the contact angle is non-trivial to

express mathematically. In this case, we first define t as the running tangent to

the contact line, n as the running outward normal to the object surface and b as

the binormal to t and n given by

b = n× t. (2.16)

Then the contact angle is set with respect to the plane containing n and b

(Kralchevsky et al., 1993). If γ̂ is the unit tangent to the liquid interface on
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2.2. Complications for objects floating at a liquid–fluid interface

this plane and b̂ is the unit binormal, then the contact angle boundary condition

reads

b̂ · γ̂ = cos θ (2.17)

at the surface of the solid object.

For completeness, figure 2.3 also shows two points on the sides of the object

where the contact line is flat. At these two points, the above boundary condition

reduces to a special case where the contact angle is defined on a vertical plane.

Such flat regions can result from the symmetry of the system.

The other boundary condition we use is the fact that the liquid–fluid interface

must be undisturbed at an infinite distance from the solid bodies. (This is true

in all analyses presented in this thesis except in section 5.7 where an infinite

lattice of floating spheres is studied). This boundary condition is mathematically

expressed as

lim
x,y→∞

ζ(x, y) = 0, (2.18)

where x, y are distances measured from the solid objects.

2.2 Complications for objects floating at a liquid–

fluid interface

In contrast to solid bodies with fixed locations, if the objects are floating, their

vertical locations, and as a result, the configuration of the three–phase contact

line remain unknown a priori. The vertical forces needs to be balanced as a part

of the solution, and the interfacial torques also need to be taken into account. I

present a new method of doing this for floating spheres in Chapter 5. In solving

for floating spheres, the torque balance need not be considered because Singh and

Hesla (2004) showed that the net torque acting on a sphere at a liquid interface

is zero regardless of the shape of the contact line, provided that the contact angle

is constant.

17



2. Fundamentals of interface shapes

2.3 Numerical methods for solving the Laplace–

Young equation

We first attempted solving the nonlinear Laplace–Young equation for the interface

shape between two interfacial objects using the standard finite difference method

on a Cartesian grid. Although this was a simple method, it was not successful

for several reasons. Firstly, the mismatch between the square grids and the

boundaries of the objects we used gave rise to inaccuracies, and resulted in non-

smooth contact lines. Using a circular grid would resolve this problem but then

cause problems at the axis of symmetry. Secondly, the meniscus slopes are largest

at the boundaries of the solid objects and then decay to zero at the edges of the

domain. As a result, it is desirable to have a dense grid near the object boundaries.

However, with the standard finite difference method, it is not easy to have such

a variable grid spacing.

These difficulties led us to consider the hp–meshless cloud method, which is a

meshfree finite difference method developed by Liszka et al. (1996). This method

does not require a grid and only uses a collection of nodes “sprinkled” in the

domain and on the boundary. As a result, it eliminates both of the drawbacks

of standard meshed methods mentioned above. The nodes can be positioned on

a boundary with any shape. This was a very significant advantage especially in

the solution of floating spheres (Chapter 5), where the horizontal projection of

the contact line does not match any standard coordinate system. Since a mesh

is not required, the density of nodes can easily be varied in the domain.

The hp–meshless cloud method also has some additional advantages. In the

standard finite difference method, each data point can only satisfy a single equa-

tion, and as a result, the grid points on the boundary satisfy only the boundary

condition while the points inside the domain only satisfy the differential equation

being solved. In contrast in the hp–meshless cloud method, one node can satisfy

more than one equation, and Liszka et al. (1996) developed a method for making

the boundary nodes satisfy both the boundary condition and the governing dif-

ferential equation. After the nodes have been distributed, if the nodal density in

some region was found to be insufficient, more nodes can be automatically added
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2.3. Numerical methods for solving the Laplace–Young equation

while solving the equation using the method developed by (Benito et al., 2003).

Because of these advantages, we used the hp–meshless cloud method to solve the

Laplace–Young equation.

2.3.1 Principles of the hp–Meshless Cloud Method

In the hp–Meshless Cloud Method, the finite difference method is generalized by

relaxing the need for a regular grid. In the standard finite difference method,

the derivatives of a function are obtained directly using the locations of the grid

points and properties of the grid. The differential equation to be solved is then

numerically expressed using these derivatives. In the hp–Meshless Cloud Method,

a different approach is used to obtain the derivatives. This method, in general,

employs an irregularly positioned set of nodes, and the derivatives are determined

using a Taylor series approximation. If the value of a function and its derivatives

at a particular point in space are known, the Taylor series can give an approxima-

tion for the function on a region close to the original point. hp–Meshless Cloud

Method is a way of reversing this procedure: the value of the function and its

derivatives at a given point is obtained using the values of the function on a set

of points around it and their locations, employing the Taylor series.

A detailed description of this method is given by Liszka et al. (1996); here

we give a simplified summary. Assume that the solution we are seeking is given

by the (unknown) function g(X), where X is a location in the domain or on the

boundary. We also assume that this solution can be approximated near a given

point X0 by the function f(X), so that f(Xq) ≈ g(Xq) where Xq is a data point

close to X0. We then look for an approximation of f based on the locations of

Xq relative to X0 so that

f(Xq) =

np∑
i=0

[
ai ∗ pi (Xq −X0)

]
, q = 1 · · ·m (2.19)

In this method, Eq. (2.19) is a set of linear equations that express the Taylor

expansion of the function f about the point X0. Then in one dimension the set
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2. Fundamentals of interface shapes

{pi(x) | i ∈ N} = P , where x = (X −X0) is given by

P =
{
1, x, x2/2, x3/6, · · ·

}
. (2.20)

In two dimensions

P =
{
1, x, y, x2/2, y2/2, xy, x3/6, · · ·

}
, (2.21)

and the coefficients ai are approximations for the function f and its derivatives

at X0.

Using the Taylor series for a two dimensional function, the final set of linear

equations resulting from Eq. (2.19) may be written as follows:

[A] Df = F , (2.22)

[A] =


1 j1 k1 j21/2 k21/2 j1k1 · · ·
1 j2 · · · · · · · · · · · · · · ·

...

jm

 , (2.23)

Df =

(
f0,

∂f0
∂x

,
∂f0
∂y

,
∂2f0
∂x2

,
∂2f0
∂y2

,
∂2f0
∂x∂y

, · · ·
)T

, (2.24)

F = (f1, f2, · · · , fm)T , (2.25)

where

fi = f(xi, yi), (2.26)

ji = xi − x0, (2.27)

ki = xi − y0. (2.28)

It should be emphasized that X0 does not need to be a node (data point),

and it can be any point in the domain. Solving Eq. (2.22) gives the value of the

function f and its derivatives as a linear combination of the values of f at nodal
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2.3. Numerical methods for solving the Laplace–Young equation

points around it. For the set of linear equations to be solvable, the number of

data points m should be no less than the number of terms n, i.e.

m ≥ n (2.29)

in Eq. (2.19). Practically, m is always kept larger then n, and as a result,

Eq. (2.22) is an overdetermined set of linear equations which is solved using

least squares method. For this method of solution, each equation in Eq. (2.22) is

weighted using a weight (wi) chosen by the function

wi = W (σi), (2.30)

where

σ =
√
j2i + k2i , (2.31)

and the weight functionW should be non-increasing with σ. The expressions thus

obtained for the derivatives by solving Eq. (2.22) can then be used to express the

differential equation to be solved, same as in the ordinary finite difference method.

The method illustrated in figure 2.4 is used to select a set of nodes close to the

central point X0 to be used in Eq. (2.22). The domain is divided into a number

of equal sections around the central point, and a pre–defined equal number of

nearest nodes are selected from each section. The central point can also be a

node, but it does not have to be one. The collection of the nodes associated with

the central point is called a “star” around the central point. This method ensures

that the stars are symmetric and their “centres of gravity” are close to the central

points. Usually, the central points coincide with a node. (However, this can be

different for nodes on the boundary, as discussed later in this section.) As shown

in figure 2.5, stars are created this way around each node, so that stars overlap

with each other.

With this numerical method, implementing Dirichlet boundary conditions is

straightforward, because this directly gives the value of the solution at a node.

However, Neumann boundary conditions require special treatment. This type of

boundary condition usually gives the derivative of the solution in the direction

normal to the boundary. This information can be used to amend Eq. (2.22) so that
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2. Fundamentals of interface shapes

Figure 2.4: A “star” is created by dividing the domain into equal sections around
the central point, and selecting an equal number of nodes from each of the sec-
tions. The central point is coloured in blue. The selected nodes are represented
by filled circles, and the nodes that are not selected are shown by empty circles.

the nodes on the boundary fulfill both the boundary condition and the differential

equation that is being solved. If any star contains one or more boundary nodes,

in addition to Eq. (2.22), the following equation is also implemented for each of

these boundary nodes:

∂f

∂n
(x, y) =

∂f

∂x
(x, y)nx +

∂f

∂y
(x, y)ny (2.32)

=
∂f0
∂x

nx +
∂f0
∂y

ny + j
∂2f0
∂x2

nx + k
∂2f0
∂y2

ny +
∂2f0
∂x∂y

(knx + jny) + · · · ,

where n̂ = (nx, ny) is the unit normal to the boundary. Implementing Eq. (2.22)

for each of the nodes in the domain and Eq. (2.32) for each of the nodes on the

boundary yields

[A] Df = F , (2.33)
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2.3. Numerical methods for solving the Laplace–Young equation

Figure 2.5: Each node is used as a central point at one time, and the “stars”
overlap with each other. The coloured curves represent the collection of nodes
formed around the central points of the same colour.

[A] =



1 j1 k1 j21/2 k21/2 j1k1

1 j2 k2 j22/2 k22/2 j2k2
...

...

1 jm km j2m/2 k2m/2 jmkm

0 n1,x n1,y j1n1,x k1n1,y (k1n1,x + j1n1,y)

0 n2,x n2,y j2n2,x k2n2,y (k2n2,x + j2n2,y)
...

...

0 nb,x nb,y jbnb,x kbnb,y (kbnb,x + jbnb,y)


, (2.34)

Df =

(
f0,

∂f0
∂x

,
∂f0
∂y

,
∂2f0
∂x2

,
∂2f0
∂y2

,
∂2f0
∂x∂y

)T

, (2.35)

F =

(
f1, f2, · · · , fm,

∂f1
∂n

,
∂f2
∂n

, · · · , ∂fb
∂n

)T

, (2.36)

where m is the number of nodes in the star and the first b nodes of these are on
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2. Fundamentals of interface shapes

the boundary. To ensure a solution

m+ b ≥ np (2.37)

needs to be satisfied. If a central point is located on the boundary, the star cannot

have nodes located in all directions, unlike the stars with central points inside the

domain. This imbalance can result in inaccuracies of the derivatives calculated

using Eq. (2.33). Therefore, when a star is needed around a boundary node, the

central point is slightly displaced in the direction normal to the boundary by a

distance δn into the domain to avoid this problem.

2.3.2 Adaptations and implementation of the hp–Meshless

Cloud Method:

The hp–Meshless cloud method was implemented using Matlab to solve the

Laplace–Young equation with the relevant boundary conditions. In this section I

list the specific adaptations of the already discussed method that were necessary

to do this.

In selecting nodes to produce a star, the space around the central point was

divided into 4 quadrants, and 12 nodes from each quadrant were selected using the

method described in figure 2.4. A 4th order Taylor series was used in Eq. (2.33)

for the calculation of the derivatives. As recommended by Liszka et al. (1996),

the weight function introduced in Eq. (2.30) was selected to be

W (σ) =
1

24σ2
(2.38)

for equations implementing the Neumann boundary condition, and

W (σ) =
1

σ3
(2.39)

for other equations. The displacement δn of the central points of stars based on

boundary nodes was selected to be one fifth of the minimum distance between

two nodes at the boundary.

The hp–Meshless cloud method reduces the problem of solving a linear partial
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2.3. Numerical methods for solving the Laplace–Young equation

differential equation into a problem of solving a set of linear equations. In the

case of a nonlinear partial differential equation, the output would be a set of

nonlinear equations. This was avoided using an iterative scheme to handle the

nonlinear terms in the Laplace–Young equation, where a set of linear equations

was solved at each step. The meniscus height at the (N − 1)st iteration was used

to give estimates of the nonlinear terms. This allows a linear equation for the

meniscus height at a particular point for the N th iteration to be written, namely:

ζ [N ] = ℓ2c
ζ
[N ]
xx (1 + ζ2y )

[N−1] + ζ
[N ]
yy (1 + ζ2x)

[N−1] − 2ζ
[N ]
xy (ζxζy)

[N−1][
(1 + ζ2x + ζ2y )

3
2

][N−1]
. (2.40)

The boundary conditions are also nonlinear, and handled in a similar iterative

scheme. This is discussed in each chapter with respect to each of the bound-

ary conditions specific to the problem then at hand. However, obtaining the

non–linear terms of the (N − 1)st iteration to set the boundary condition in the

N th iteration gives rise to an error because the derivatives obtained by solving

Eq. (2.33) are not evaluated exactly on the boundary, but at a small distance δn

away from it. This error has been corrected in the results shown in Chapters 4–6,

by using a third order Taylor series to calculate the values of the derivatives on

the boundary based on those a distance δn away. As a result, the results shown

in these chapters precisely satisfy the given contact angle boundary condition.

However, this correction prevents the iterative scheme from converging at con-

tact angles close to 0. It was therefore not used in Chapter 3 where small contact

angles are discussed, and as a result, the values of contact angles in this chapter

have a small error, especially when they are close to 0.

In the numerical solution discussed in Chapter 5, there is another complica-

tion, because this is a free boundary problem and the location of the boundary

is not known a priori. I developed a new algorithm (Algorithm 1) to solve this

problem, which is described in that chapter.

The iterative scheme to solve the nonlinear Laplace–Young equation is contin-

ued until the maximum difference between the interface position in two consecu-

tive iterations is very small (i.e. corresponding for typical physical parameters to

displacements on the order of 10−13 m). Starting from an initially flat interface
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2. Fundamentals of interface shapes

(corresponding to θ = 90◦), the contact angle was gradually changed from 90◦ to

the desired contact angle. The final converged solution of Eq. (2.40) using the

respective boundary conditions is the equilibrium shape of the meniscus. If the

iterative scheme failed to converge, the collection of nodes was refined by adding

more nodes in the areas of maximum error, according to the h–adaptive method

proposed in (Benito et al., 2003). The minimum distance from the centre of a

solid object to the edge of the domain was 7ℓc, and a typical domain contained

6000-9000 nodes.

With these modifications, the hp-Meshless Cloud Method was used to solve

of nonlinear Laplace–Young equation for the variety of problems discussed in

the following chapters. Further details of the numerical approach used for each

problem are discussed in the corresponding chapters.
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2.A. Derivation of the Young’s law

2.A Derivation of the Young’s law

This appendix describes the derivation of the Young’s law mentioned in sec-

tion 2.1.2. When the drop shown in figure 2.2 spreads, the increase of its contact

area with the solid is

dAsl = 2πpdp. (2.41)

The change in surface energy due to this is

dEsl = (γsl − γsf ) dAsl. (2.42)

Meanwhile, the area of the liquid–air interface also changes. The surface area of

the spherical cap of the drop is

Alf = π
(
p2 + h2

)
, (2.43)

and the change of this area is

dAlf =
∂Alf

∂p
dp+

∂Alf

∂h
dh (2.44)

= 2πpdp+ 2πhdh.

dp and dh are related because the volume of the drop V is conserved.

V =
π

6

(
3p2h+ h3

)
(2.45)

dV =
∂V

∂p
dp+

∂V

∂h
dh

= πphdp+
π

2

(
p2 + h2

)
dh.

Since the volume is constant, dV = 0. Therefore,

dh

dp
= − 2ph

p2 + h2
. (2.46)
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2. Fundamentals of interface shapes

From Pythagoras’ theorem we have

p2 = R2 − (R− h)2 (2.47)

= 2Rh− h2.

Substitution into Eq. (2.46) gives

dh

dp
= − p

R
. (2.48)

This result is the substituted to Eq. (2.44) to obtain

dAlv = 2πpdp− 2πh
p

R
dp (2.49)

= 2πp

(
R− h
R

)
dp

= 2πp cos θdp.

The total change in the Gibb’s free energy can now be calculated as:

dG = (γsl − γsf ) dAsl + γlfdAlf (2.50)

= 2πp (γsl − γsf ) dp+ 2πp cos θγlfdp

At equilibrium we have dG = 0, which gives γsl = γsf −γlf cos θ, which is known

as the Young’s law.
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Chapter 3

The capillary interaction between

vertical cylinders at a liquid–fluid

interface

In this chapter, I study the immersion forces between a pair of fixed vertical

circular cylinders. Calculating the interaction force in this simplified geometry is

a first step determining the interactions in more complex systems, but is also of

interest in its own right: the capillary force between vertical cylinders has been

measured experimentally using a torsion microbalance (Ceco et al., 1996; Velev

et al., 1993) and, whilst generally agreeing with existing asymptotic expressions

for the force (Kralchevsky et al., 1993), revealed some significant discrepancies.

This chapter demonstrates that these discrepancies can largely be attributed to

the simplifications made to facilitate analytical progress.

Theoretical expressions have been derived for capillary interactions between

fixed vertical cylinders (Kralchevsky et al., 1993), between floating spheres (Chan

et al., 1981) and between capillary multipoles (Danov et al., 2005). However,

these expressions have limited validity since they are based on the solution of

the linearized Laplace–Young equation for the shape of the interface between the

objects and in some cases (Chan et al., 1981) also use linear superposition of the

interfacial shape around a single object. These two approximations can be relaxed

by solving the fully nonlinear Laplace–Young equation numerically. Previously,
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3. The capillary interaction between vertical cylinders at a liquid–fluid interface

the finite difference method has been used to provide these numerical solutions

(Pozrikidis, 2010). However, it was reported that the numerical solution obtained

in this manner was very slow and the most interesting cases of complete wetting

and small inter-particle separations (for which the meniscus slope is expected to

be largest and hence the validity of the asymptotic results most limited) were not

studied. Indeed, for the range of parameters considered in Pozrikidis (2010) no

significant deviation between the numerical solution and the asymptotic results

was observed. In this chapter, I discuss an implementation of the hp-meshless

cloud method (Liszka et al., 1996), introduced in section 2.3. This method is

chosen here for its versatility and allows the iterative solution of the nonlinear

Laplace–Young equation even for conditions of complete wetting and for objects

at very close range. The main reason was the great flexibility this method allowed

in distributing the nodal points.

3.1 Theoretical Setting

We consider two vertical cylinders with radii R1, R2 and contact angles θ1, θ2

that pierce an otherwise planar liquid–fluid interface. This scenario is shown in

figure 3.1. The planar interface is disturbed by the presence of the two cylinders

because of the requirement that the interface obeys a contact angle condition at

the surface of the cylinders. The height of the liquid interface is given by:

z = ζ(x, y) (3.1)

with z = 0 representing the undisturbed liquid level. (x, y) are Cartesian coor-

dinates with the x− axis lying along the line connecting the centres of the two

cylinders. The shape of the meniscus, ζ(x, y), is described by the Laplace–Young

equation (Eq. 2.11).

For a meniscus near a vertical cylinder, the appropriate boundary condition

is a fixed contact angle θ, as shown in figure 3.1. Same as in section 2.1.3, we

define t as the running tangent to the contact line, n as the running outward

normal to the cylinder wall and b as the binormal to t and n. Then Eq. (2.17)

yields the boundary condition b̂ · γ̂ = cos θi on the surface of cylinder i, with θi
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Figure 3.1: A pair of vertical cylinders at a liquid-fluid interface interact due to
capillary forces, when one of the fluid phases preferentially wets the solid. Bound-
ary conditions around the two cylinders are shown, and notation is discussed in
the text.

defined on the plane containing n and b

The solution of the Laplace–Young equation (2.11) subject to the bound-

ary condition (2.17) on the surface of each cylinder, and the requirement that

ζ(x, y)→ 0 as x, y → ±∞, is sufficient to determine the meniscus profile ζ(x, y)

for a particular cylinder separation d and given cylinder radii R1,2 and contact

angles θ1,2.

The quantity of most interest in this chapter is the lateral interaction force

F between the cylinders i.e. the force that must be applied to each cylinder to

maintain a particular separation d. In general, we expect that the two cylinders

will be attracted to one another (so that F > 0) but we shall see that there are

circumstances under which a repulsive force exists at large separations. Once the

shape of the meniscus is known, the component of the force of attraction due to
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3. The capillary interaction between vertical cylinders at a liquid–fluid interface
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Figure 3.2: Numerical solution for the shape of the 3-dimensional meniscus near
two cylinders with R1 = R2 = 365µm, d = 1150µm and complete wetting
(θ = 0◦) in a solution matching the properties of experiments in Ceco et al. (1996):
SDS solution with γ = 36.8mN/m and ∆ρ = 1000 kg/m3, so that ℓc = 1.9mm.

surface tension can be calculated by integrating the force due to surface tension

around the contact line, as suggested in Kralchevsky et al. (1993). The surface

tension force acting on a cylinder is given by:

Fγ =

∮
γ ds. (3.2)

Here γ is the surface tension force acting along an infinitesimal arclength ds along

the contact line, and ds is given by:

ds = χ dα (3.3)

where χ is defined by

χ =

√
R2

k +

(
∂ζ

∂α

)2

, k = 1, 2, (3.4)

and α is the angle between the x−axis and the line joining the centre of the
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3.1. Theoretical Setting

cylinder to a point on the contact line (see figure 3.1).

The vector γ can be decomposed as:

γ(i) = γ(b̂ cos θi + n̂ sin θi), i = 1, 2. (3.5)

If ex, ey and ez are unit vectors along the x, y and z directions, respectively,

then:

n̂ = cosαex + sinαey; (3.6)

t̂ =
1

χ

(
Rk sinαex −Rk cosαey −

∂ζ

∂α
ez

)
; (3.7)

b̂ = n̂× t̂

=
1

χ

(
− ∂ζ
∂α

sinαex +
∂ζ

∂α
cosαey −Rkez

)
. (3.8)

Substituting into Eq. (3.5), the x component of γ becomes:

γ(i)x = γ

(
− ∂ζ
∂α

1

χ
sinα cos θi + cosα sin θi

)
. (3.9)

Combination of Eq. (3.9) with Eq. (3.2) and Eq. (3.3) gives:

F (i)
γ,x = γ

∫ 2π

0

(
− ∂ζ
∂α

sinα cos θi + χ cosα sin θi

)
dα. (3.10)

In addition to the force from surface tension, a force also acts on each cylinder

due to the variations in hydrostatic pressure around the cylinder. This force arises

from the differences in liquid level around the cylinder. The x−component of this

force is given by:

Fp,x = ∆ρgRk

∫ 2π

0

1

2
ζ2 cosα dα. (3.11)

Then the total force of attraction between the two cylinders is:

Fx = F (i)
γ,x + F (i)

p,x. (3.12)

It should be noted that F
(1)
γ,x and F

(2)
γ,x are not necessarily equal. However, the total
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3. The capillary interaction between vertical cylinders at a liquid–fluid interface

force given by Eq. (3.12) is the same for both cylinders according to Newton’s

third law.

The above approach is used to calculate the force of interaction from the

numerical solution for the meniscus shape. The force can also be calculated using

an energy approach, as used in the asymptotic solutions discussed in section 3.2.

This approach is discussed in detail in Kralchevsky et al. (1993). If the total

energy of the system is E and the inter-particle centre-to-centre distance is d,

then the inter-particle attractive force is given by:

F =
dE

dd
. (3.13)

The interaction energy E is comprised of three components as shown below:

E = ∆ρg

∫
Sp

1

2
ζ2 dS

+
2∑

k=1

(γ
(k)
sl − γ

(k)
sf )

∫ 2π

0

ζ(α, k)Rk dα

+ γ

∫
Sp

√
1 + ζ2x + ζ2y dS. (3.14)

In Eq. (3.14), the first term represents the gravitational potential energy of the

fluids, the second term is the interfacial energy between the walls of the cylinders

and each of the two fluids, and the third term is the interfacial energy between

the two fluids. Here Sp is the projected area of the fluids to the horizontal plane,

γ
(k)
sl is the surface tension between the cylinder k surface and the lower liquid, γ

(k)
sf

is the surface tension between the cylinder k surface and the upper fluid, ζ(α, k)

is the height of the contact line around cylinder k where α is the angle measured

around a cylinder.
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3.2. Existing Asymptotic Results

3.2 Existing Asymptotic Results

3.2.1 Some simplifications

There are two asymptotic limits in which the interaction force between two cylin-

ders can be solved analytically, as described below. In both of these limits, the

problem is simplified by linearisation of the Laplace–Young equation as men-

tioned in section 2.1.1 so that the interfacial deformation is approximately given

by Eq. (2.13). This approximation is valid only when the meniscus slopes are

small (Eq. 2.14).

When calculating the energy of interaction in certain asymptotic limits, it

is furthermore expedient to neglect the gravitational energy of the liquid in

Eq. (3.14) compared to other energies. This approximation is expected to be

valid for small cylinders R1, R2 ≪ ℓc. We note that although we neglect the grav-

itational energy in the asymptotic results that follow, our numerical simulations

(discussed below in section 3.3) do not neglect this energy.

However, it is also important to emphasize that the inclusion of the term

linear in ζ in Eq. (2.13) is important in the asymptotic results that follow since

it is this term that ensures that the interface decays to the undisturbed level far

from the cylinders — something that the solution to Laplace’s equation ∇2ζ = 0

is unable to do.

3.2.2 Long-Range Asymptotic Solution

If the separation of the two cylinders d is large compared to the capillary length

ℓc, we may consider the meniscus around a single cylinder and, assuming that

the individual menisci may simply be superposed, calculate the surface energy

increase that results from their interaction. This is the dominant energy that

leads to the force of interaction.

A detailed solution of the meniscus shape around a single cylinder was pre-

sented by Lo (1983). Far away from the cylinder (compared to the capillary

length ℓc) it is convenient to write the linearized Laplace–Young equation (2.13)
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3. The capillary interaction between vertical cylinders at a liquid–fluid interface

in cylindrical polar coordinates to give the interface shape ζ(r) as the solution of:

ζ =
ℓ2c
r

d

dr

(
r
dζ

dr

)
, (3.15)

where r is radial distance measured from the centre of the cylinder. The solution

of this equation that decays as r →∞ is:

ζ(r) = AK0(r/ℓc), (3.16)

where K0 is the modified Bessel function of the second kind of zeroth order

(Abramowitz and Stegun, 1964). In the limit R ≪ ℓc we may determine the

constant of integration A as follows. The weight of liquid lifted up within the

meniscus is

W = 2π∆ρg

∫ ∞

R

rζ dr = 2πγA
R

ℓc
K1(R/ℓc) ∼ −2πγA (R≪ ℓc). (3.17)

Using the generalized Archimedes’ principle (Keller, 1998) this weight must be

supported by the force of surface tension acting around the contact line, which

in this case is 2πR × γ cos θ. Hence we find that A = R cos θ. We note that this

result may also be obtained by careful matching of the profile from Eq. (3.16) with

the meniscus shape near to the cylinder for which the slope cannot necessarily be

assumed to be small (Lo, 1983).

Assuming that the two cylinders are sufficiently far apart from one another

(i.e. that their separation d ≫ ℓc) then we neglect the first and last terms of

Eq. (3.14), and expect that the energy of interaction will simply be the increase

in surface energy caused by the change in the height of the meniscus on cylinder

2 due to the meniscus of cylinder 1 (and vice versa). This energy is larger than

the increase in gravitational potential energy of the meniscus due to the same

effect and the change in energy of the liquid-fluid interface, provided that R1,2 ≪
ℓc. Since this energy of interaction ∆E is caused by solid–fluid interface being

replaced by solid–liquid interface we expect that the difference in the surface

energies of these interfaces on cylinder 2, γ
(2)
sl − γ

(2)
sf , will be important and so we
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3.2. Existing Asymptotic Results

have:

∆E = 2πR2[γ
(2)
sl − γ

(2)
sf ]ζ1(d).

Using Young’s law (Eq. 2.15), γ
(2)
sl − γ

(2)
sf = −γ cos θ2 and Eq. (3.16) for the

meniscus profile ζ1, we find that:

∆E = −2πγR1R2 cos θ1 cos θ2K0(d/ℓc). (3.18)

The force of attraction F is given by F = dE/dd and so we have that the force

of interaction between the two cylinders is:

F =
2πγR1R2

ℓc
cos θ1 cos θ2K1(d/ℓc). (3.19)

This result is given by several authors (see for example Kralchevsky and Na-

gayama (2001)) and can be derived more formally. However, the result Eq. (3.19)

remains unchanged.

3.2.3 Short-Range Asymptotic Solution

Kralchevsky et al. (1993) developed another analytical solution for a pair of

cylinders in the opposite limit in which the inter-particle distance is small com-

pared to the capillary length: d ≪ ℓc. Instead of linear superposition, the lin-

earized Laplace–Young equation is solved in bipolar cylindrical coordinates for

the meniscus around two vertical cylinders. The bipolar cylindrical coordinate

system(Jeffrey, 1995) does not allow the implementation of a boundary condition

at infinite distance away from the cylinders. To circumvent this problem, an

asymptotic matching was carried out considering d/ℓc as a small parameter. We

do not repeat this involved calculation here but merely note the final result for

the force between two identical cylinders:

F =
2γπR2 cos2 θ√
d2 − 4R2

. (3.20)
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3. The capillary interaction between vertical cylinders at a liquid–fluid interface

We note that Eq. (3.20) is strictly valid only in the limit R≪ d≪ ℓc and so:

F ≈ 2γπR2 cos2 θ

d
,

which is precisely the d ≪ ℓc limit of the long range force law Eq. (3.19). To

make best use of this observation, Kralchevsky and Nagayama (2001) pose the

composite expansion:

F =
2πγR1R2

ℓc
cos θ1 cos θ2K1(d/ℓc). (R≪ ℓc) (3.21)

3.3 Numerical Solution of the meniscus profiles

Using numerical methods it is possible to solve the full nonlinear Laplace–Young

equation Eq. (2.11) without the simplifying assumptions needed to make ana-

lytical progress. For this, the hp–Meshless Cloud Method (Liszka et al., 1996)

described in section 2.3 was used. As mentioned earlier, this method does not

require a regular grid, but only a collection of nodes.

These nodes can easily be positioned on the domain boundaries (the cylinders)

with nodes within the domain distributed initially on concentric circles, centred

at the centre of each cylinder (these circles are clipped along the centre-line

between the two circles to avoid them intersecting one another). Furthermore,

the radii of these circles are selected in such a way that the node density decreases

exponentially with distance from the cylinders. This was an efficient way of

dealing with the rapid change in interface shape near the cylinder and slower

change further away.

The nonlinear terms in the Laplace–Young equation are handled using the it-

erative scheme described in Eq. (2.40). It is also necessary to modify the boundary

condition Eq. (2.17) so that the relevant nonlinearities are handled by a similar

iterative procedure. If ŝ is the outward unit normal to the liquid surface from

the contact point along the plane containing b and n, it can be deduced from

Eq. (2.17) that:

n̂ · ŝ = cos θi. (3.22)
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3.3. Numerical Solution of the meniscus profiles
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Figure 3.3: (a) Force of attraction between two identical hydrophilic cylinders
with θ1 = θ2 = 0◦ and R1 = R2 = 365 µm in a solution of SDS with γ =
36.8mN/m, ∆ρ = 1000 kg/m3 so that ℓc = 1.9mm. Experimental results from
Ceco et al. (1996) (�) are shown along with predictions from the full numerical
solution described here (•) and the asymptotic result Eq. (3.21) (solid curve). (b)
Force of attraction between two similar, but not identical, hydrophilic cylinders
with θ1 = θ2 = 0◦, R1 = 315 µm and R2 = 370 µm in the same SDS solution as
in (a). Experimental results from Velev et al. (1993) (⋄) are shown along with
predictions from the full numerical solution described here (•) and the asymptotic
result Eq. (3.21) (solid curve).

Now

{ŝ} = −{ζx, ζy,−1}/
√
ζ2x + ζ2y + 1, (3.23)

and we may write n̂

{n̂} = {nx, ny, 0} (3.24)

since n̂ lies in the horizontal plane. Eq. (3.22) can then be expressed as:

ζxnx + ζyny = − cos θi

√
ζ2x + ζ2y + 1, (3.25)

which may in turn be converted to an iterative equation

[ζxnx + ζyny]
[N ] = − cos θi

[√
ζ2x + ζ2y + 1

][N−1]

. (3.26)
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3. The capillary interaction between vertical cylinders at a liquid–fluid interface

1 2 3 4 5 6

500

1000

1500

2000

d/(2R)

F

γ
R

1
R

2
co

s
θ
1
co

s
θ
2
/
l c

Figure 3.4: The asymptotic solution Eq. (3.21) (solid curve) agrees with numerical
simulations for R ≪ d ≪ ℓc (points). Here R1 = R2 = 5 µm, θ1 = θ2 = 0◦ and
the liquid properties are those for an air–water interface (i.e. γ = 72.4 mN/m
and ∆ρ = 1000 kg/m3 so that ℓc = 2.7mm). The cylinder diameter here is
2R ≈ 3.7× 10−3ℓc.

A typical interface shape, showing the meniscus height calculated at each node

point is presented in figure 3.2. With this converged meniscus shape, the force of

interaction was determined by integration along the three–phase contact lines as

described by Eqs. (3.2 - 3.12).

3.4 Force of interaction between vertical cylin-

ders

Figure 3.3(a) and figure 3.3(b) show the attractive capillary force between two

perfectly wetting cylinders (i.e. θ = 0◦). Over the whole range of available ex-

perimental data, the numerical solution agrees very well with experiments (Ceco

et al., 1996). In addition, the asymptotic solution (3.21) agrees with both nu-

merics and experiments at large inter-particle separations, as expected. However,

when the two cylinders are close to one another, the experimental data deviate

from this asymptotic solution. We attribute this discrepancy to the fact that at

such small separations the meniscus slopes are large, invalidating the linearization
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3.4. Force of interaction between vertical cylinders
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Figure 3.5: Force of interaction between two dissimilar cylinders, matching exper-
imental conditions of (Velev et al., 1993): one cylinder is hydrophilic and the other
hydrophobic, held in water with γ = 72.4mN/m, R1 = 370µm, R2 = 315µm and
θ1 = 0◦ (the value of θ2 is not reported). Numerical results (•) are shown together
with the asymptotic prediction Eq. (3.21) (solid curve) with the value θ2 = 101.5◦.
The numerical simulation is able to reproduce the reduction in repulsive force ob-
served at short ranges in the experimental results (⋄) of Velev et al. (1993) and
shows that the force becomes attractive at very short range. According to Velev
et al. (1993), the long-range asymptotic result agrees best with experiments when
θ2 = 99◦. However, carrying out the numerical solution for a range of θ (with
increments of 0.5◦), we found that the best match is for θ2 = 101.5◦.

of the Laplace–Young equation made in the derivation of Eq. (3.19). The high

meniscus slopes present for these parameter values are clearly illustrated in the

numerically generated meniscus profile shown in figure 3.2.

It is well-known that the meniscus around a single very small cylinder (R≪ ℓc)

decays over a distance comparable to the cylinder radius R, rather than the

capillary length ℓc (Lo, 1983). (The vertical surface tension force exerted by

such small cylinders are capable of lifting only small volumes of liquid, so that

the perturbations to the interface are smaller.) Because of this we expect that

the asymptotic force law Eq. (3.21) should be valid for cylinder separations d

satisfying R ≪ d. To confirm this expectation, figure 3.4 shows the results of
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3. The capillary interaction between vertical cylinders at a liquid–fluid interface

numerical solutions in this regime. We observe that as d → 2R the asymptotic

result Eq. (3.21) breaks down because of the large meniscus slopes (as previously)

but that for d≫ R the asymptotic expression is perfectly adequate.

As a more compelling demonstration of the predictive power of our numerical

method in comparison to the asymptotic result Eq. (3.21), figure 3.5 shows the

interaction force between a hydrophilic and a hydrophobic cylinder. In this situa-

tion, the asymptotic result is able to predict the long range repulsive force that is

observed experimentally (F < 0). However, it is completely unable to reproduce

the fact that this repulsion changes sign and becomes a short range attraction

when the cylinder separation becomes on the order of their radii.

For the interaction between two vertical plates, a physical explanation of such

a transition to attraction was given by Poynting and Thomson (1947) and is

repeated, along with illustrative calculations, in Vella and Mahadevan (2005).

In summary, the meniscus between the two hydrophilic and hydrophobic plates

has to pass through the ζ = 0 level, and as a result, its curvature significantly

increases as the distance between the plates approaches zero. According to the

Laplace–Young equation, this causes the liquid column between the plates to rise

upwards, producing a negative hydrostatic pressure in this region, resulting in

an attractive force between the plates. However, we note that this explanation,

which is solely based on hydrostatic pressure, has limited applicability to the

interaction between cylinders because the changes in the contact line shape at

close range can result in more significant alterations to the surface tension force

acting between the cylinders.

The effect of the contact angle on the difference between the numerical results

and the asymptotic result Eq. (3.21) is considered in figure 3.6. The results show

that the deviation is highest at the steepest meniscus, θ = 0◦. This is expected

because the steeper the meniscus, the larger the error introduced by linearizing the

Laplace–Young equation. However, it can also be observed that even at a contact

angle of 85◦, which leads to a very small meniscus slope angle at the edge of the

cylinders, there is a significant deviation from the asymptotic prediction when

the two cylinders are close to one another. Comparison of results for cylinders

of different radii (figure 3.6a versus figure 3.6b) suggests that there is a larger

discrepancy between the asymptotic and numerical results as R increases. This
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Figure 3.6: The deviation of the numerical results from the asymptotic prediction
Eq. (3.21) depends on the contact angle and cylinder radius. Figure shows the
numerically determined force of attraction between two identical cylinders as the
radius and contact angle change. In (a) R = 0.0026 ℓc, while in (b) R = 0.26 ℓc.
In both (a) and (b), points represent numerical results with contact angle θ = 0◦

(e), θ = 45◦ (�), and θ = 85◦ (♢) while the solid curves show the asymptotic
result Eq. (3.21).

is because the asymptotic prediction for the meniscus height Eq. (3.21) is derived

under the assumption that R≪ ℓc, and breaks down as R approaches ℓc.

Finally, we discuss the validity of approximating the true force law by a power

law. Such approximations are of considerable use in more complex scenarios,

most notably when attempting to understand the dynamics of aggregation (Chan

et al., 1981; Loudet et al., 2005; Vella and Mahadevan, 2005). Based on the

composite asymptotic expansion Eq. (3.21) it is common to use the well-known

result (Abramowitz and Stegun, 1964) that K1(x) ∼ x−1 for x ≪ 1 to obtain

F ∼ d−1 for d≪ ℓc. figure 3.7 shows the effective power-law exponent determined

from the numerical simulations presented in this chapter. We observe two features

of this power-law exponent: firstly, the value of the power-law is not universal and

depends both on d/ℓc and the particle size R/ℓc. Secondly, the regime of validity

of such power-laws is extremely limited with none of those plotted in figure 3.7

valid over even a decade in d/ℓc! This should serve as a warning when making

such simplifications or when trying to infer a simple exponent from experimental
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3. The capillary interaction between vertical cylinders at a liquid–fluid interface
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Figure 3.7: The force-law is in general not well approximated by a power law.
Here, the local power-law exponent is determined as the logarithmic derivative
of the numerically-determined force with respect to distance. We consider pairs
of identical cylinders with θ = 0◦, and a variety of radii: R = 0.0026ℓc (�), R =

0.01ℓc (⋆), R = 0.11ℓc (�), R = 0.16ℓc (e), R = 0.26ℓc (⋆). The result expected
on the basis of the asymptotic solution Eq. (3.21) is shown for comparison (solid
curve) and demonstrates the oft-assumed exponent of −1 in the limit d≪ ℓc.

data.

3.5 Concluding remarks on vertical circular cylin-

ders

We have presented numerical solutions of the nonlinear Laplace–Young equa-

tion based on the hp-Meshless Cloud method. This provides a versatile tool

for the simulation of the meniscus shape around pairs of vertical cylinders in

regimes where simple asymptotic approximations are not valid. Crucially, the

determination of the interface shape via this method allowed us to calculate the

force-separation curve for a range of parameter values and to probe the regime of

validity of the asymptotic solutions. These asymptotic solutions rely on the lin-

earization of the Laplace–Young equation and hence fail in situations where the

meniscus slope cannot be assumed to be small. In particular, this simplification
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3.5. Concluding remarks on vertical circular cylinders

is not valid for contact angles near perfect wetting and/or complete hydropho-

bicity, and when the two objects are close to each other. In these regions, the full

numerical solution is necessary. Our numerical simulations show excellent agree-

ment with experimental results from the literature even in regimes where the

asymptotic results are at variance with experiments. Finally, we demonstrated

that the true interaction force-law is not well approximated by simple power laws

and hence that caution should be used when making such approximations.
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Chapter 4

Elliptical cylinders at a

liquid–gas interface

Anisotropic objects at a liquid interface are of great practical importance because

their interaction via capillary forces depends on the orientation. The anisotropic

interactions can be used to drive the self-assembly of more complex structures

than are seen with isotropic particles. Indeed such effects are thought to be be-

hind the complexity in aggregates of mosquito eggs (Loudet and Pouligny, 2011;

Saliternik, 1942) and whirligig beetles (Voise et al., 2011). Artificial anisotropic

objects have also been shown to produce a rich variety of self–assembled aggre-

gates (Syms et al., 2003). Attraction and assembly among floating ellipsoids

(Lewandowski et al., 2008; Loudet and Pouligny, 2009), horizontal cylinders

(Lewandowski et al., 2010) and other complex shapes (Lewandowski et al., 2008)

have been experimentally studied.

In order to understand the behavior of anisotropic objects, it is mathemati-

cally simplest to analyze objects with an elliptical shape. There have been several

studies of floating ellipsoidal particles. For example, capillary interaction poten-

tials between a pair of floating ellipsoids have been experimentally measured by

Loudet et al. (2005). These potentials were reported to behave according to a

power law with the inter-particle distance, with the power law exponent for the

tip–to–tip orientation of the two ellipsoids having a more negative value than that

of the side–to–side orientation. Lehle et al. (2008b) addressed the same problem,
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4. Elliptical cylinders at a liquid–gas interface

where a perturbation solution was given assuming small meniscus slopes and neg-

ligible particle weight. They reported that at long range, the force of attraction

between two ellipsoids is not orientation–dependent. In contrast at short–range,

the force in the tip–to–tip configuration was predicted to be larger than that for

the side–to–side configuration. However, according to Lehle et al. (2008b), the

forces of attraction at close range are not described by power laws, and the power-

law like behavior observed by Loudet et al. (2005) is due to the narrow range of

inter-particle distances used experimentally. However, a complete solution for

the capillary interaction between floating ellipsoids where the nonlinear Laplace–

Young equation is solved and the particle weight is taken into consideration, is still

lacking. In particular, it is important to note that all previous theoretical works

have neglected the hydrostatic pressure term in the Laplace–Young equation.

Vertical elliptical cylinders offer a simplified setting to understand the behav-

ior of floating anisotropic particles at a liquid-fluid interface. Because of their

constant cross sections, the horizontal projection of the three-phase contact line

is known a priori, simplifying the imposition of the contact angle boundary con-

dition. This enables the solution of the nonlinear Laplace–Young equation using

a numerical method. Additionally, vertical elliptical cylinders have their own

practical importance. A liquid interface pinned around such a cylinder can be

utilized to direct the self assembly of small floating particles. It has been shown

recently that horizontally floating small cylinders attract preferentially towards

the pointed end of the elliptical cylinder in such a system (Cavallaro Jr et al.,

2011). The floating cylinders create quadrapolar deformations in the liquid in-

terface and the attraction is governed by the liquid–fluid interfacial energy. The

shape of the meniscus around the elliptical cylinder needs to be understood for

a detailed analysis of this system. Cavallaro Jr et al. (2011) had the contact line

of the vertical elliptical cylinder pinned on a horizontal plane, which simplified

the problem. They approximated the meniscus near the cylinder as one resulting

from a capillary monopole in elliptic cylindrical coordinates. It is conceptually

interesting to extend such a system to a vertical elliptical cylinder where the

contact line is not pinned but instead has a fixed contact angle (i.e. involving

Neumann boundary conditions) and also to the case of multiple elliptical cylin-

ders. This needs an accurate solution for the meniscus shape around an elliptical
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cylinder for the case in which the position of the contact line is not known a

priori.

An asymptotic solution for the meniscus around an isolated elliptical cylin-

der with a fixed contact angle has been proposed by Hill and Pozrikidis (2011).

However, this was achieved by considering the ellipse as a small perturbation to

a circle, and therefore, the solution is limited to elliptical cylinders with aspect

ratios close to unity. An accompanying numerical solution was also presented

for the same system where a finite difference method was employed to solve the

nonlinear Laplace–Young equation using orthogonal curvilinear coordinates gen-

erated by conformal mapping. The contact line was mentioned to be descending

at the tips of the elliptical cylinder and rising at the sides. No detailed figures

showing the contact line of the meniscus shapes were presented there, however.

Using a similar numerical method, the meniscus shape around an isolated el-

liptical cylinder with a pinned horizontal contact line has been calculated by

Pozrikidis (2010).

In this chapter, I first present a new asymptotic solution for the meniscus

shape around an elliptical cylinder with a fixed contact angle, in the limit of small

meniscus slopes. This solution is applicable even for cylinders with large aspect

ratio because elliptic cylindrical coordinates are used here, unlike previously pub-

lished solutions. I then present a simpler approximation for the meniscus shape

far away from the cylinder. This chapter also includes numerical solutions for the

interface shape around one or two elliptical cylinders; these results were obtained

by solving the nonlinear Laplace–Young equation subject to the nonlinear bound-

ary conditions. I finally calculate the force of attraction between two elliptical

cylinders in the vicinity of one another using both the numerical and asymptotic

methods. For this, two specific relative orientations of the cylinders are consid-

ered: side–to–side and tip–to–tip. I also note that the cylinders do not undergo

any rotational movement in these two configurations because of the symmetry

conditions.
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4. Elliptical cylinders at a liquid–gas interface
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Figure 4.1: Diagram shows the physical system considered in this chapter: Two
cylinders of elliptical section, maintained vertical at a liquid-gas interface and
held a distance d apart. The boundary conditions at the walls of the cylinders
are given by the contact angles θ1 and θ2. the tangent, normal and binormal
vectors at the contact line are shown in the diagram.

4.1 Theoretical setting

We first consider a single vertical cylinder with elliptical cross section piercing a

liquid-gas interface. As before, the position of the liquid interface is given by

z = ζ(x, y), (4.1)

where x and y are distances measures along the horizontal plane. Far away from

the cylinder, the interface is undisturbed by the presence of the cylinder so that

ζ → 0. The interface height must satisfy the Laplace–Young equation, which was

described in Eq. (2.11).

The liquid interface meets the wall of cylinder at a fixed contact angle θ

(see figure 4.1). In order to use this contact angle as a boundary condition for

solving the Laplace–Young equation, it is convenient to introduce the elliptic

cylindrical coordinate system (u, v, σ) as shown in figure 4.2. (More details about
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Figure 4.2: Diagram illustrating the elliptic cylindrical coordinate system (u, v)
used in this chapter along with Cartesian coordinates (x, y). The elliptic cylindri-
cal coordinate system is adjusted in such a way that u = u0 denotes the horizontal
projection of the boundary of the elliptical cylinder.
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4. Elliptical cylinders at a liquid–gas interface

this coordinate system may be found in Jeffrey (1995).) Consider the ellipse

produced by taking a horizontal cross section of the elliptical cylinder. If s is

the major axis of this ellipse and t is the minor axis, then the elliptic cylindrical

coordinates are related to the Cartesian coordinates by

x = a cos v coshu, (4.2)

y = a sin v sinhu, (4.3)

z = σ, (4.4)

where a given by

a =
√
s2 − t2, (4.5)

is chosen to ensure that the ellipse of interest may be written in the form u = u0,

where

u0 = arctanh
(s
t

)
. (4.6)

In Cartesian coordinates, the position vector of a point P on this boundary is

Ph = a cos v coshu0 ex + a sin v sinhu0 ey, (4.7)

where ex and ey are unit vectors in x, and y directions respectively, and the

subscript h emphasizes that this point has been projected onto the horizontal

plane.

The contact angle θ is the angle between an outward vector normal to the

surface of the cylinder and an outward vector normal to the surface of the liquid

surface, both originating from the same point on the contact line. Now we de-

termine these two vectors so that we can implement the contact angle boundary

condition.

The horizontal unit tangent vector to the boundary of the cylinder is

t̂h = −∂Ph

∂v

/∣∣∣∣∂Ph

∂v

∣∣∣∣ (4.8)

=

√
2 cosh u0 sin v√

cosh 2u0 − cos 2v
ex −

√
2 sinhu0 cos v√

cosh 2u0 − cos 2v
ey.
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4.2. Solution for small interface deformations

Differentiation of this gives the unit normal vector to the outer wall of the cylinder

to be

n̂ =
∂t̂h
∂v

/∣∣∣∣∂t̂h∂v
∣∣∣∣ (4.9)

=

√
2 sinhu0 cos v√

cosh 2u0 − cos 2v
ex +

√
2 cosh u0 sin v√

cosh 2u0 − cos 2v
ey.

The unit outward vector to the liquid interface ŝ is given in Eq. (3.23). Since

θ is the angle between n̂ and ŝ, in consistence with Eq. (3.22) we must have

n̂ · ŝ = cos θ. Substitution of the expressions for n̂ and ŝ (Eqs. 4.9, and 3.23)

into Eq. (3.22) gives

sinhu0 cos v ζx + coshu0 sin v ζy√
ζ2x + ζ2y + 1

= − cos θ

√
cosh 2u0 − cos 2v

2
. (4.10)

Eq. (4.10) is the boundary condition that is to be imposed at u = u0 when solving

the Laplace–Young equation. Additionally as u→∞, we also require that ζ → 0.

4.2 Solution for small interface deformations

In this section, I present a new solution for the meniscus around a single elliptical

cylinder in the range of small interface deformations, i.e. |∇ζ ≪ 1|. I then use

this result to calculate the (orientation–dependent) force of attraction between

two such cylinders.

4.2.1 The linearized Laplace–Young equation and the bound-

ary condition in elliptic cylindrical coordinates

We are unable to solve the fully nonlinear Laplace–Young equation (Eq. 2.11)

analytically, we linearize it by assuming small meniscus slopes, i.e. ζx, ζy ≪ 1.
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4. Elliptical cylinders at a liquid–gas interface

Applying this assumption, the Laplace–Young equation can be linearized to

ζ ≈ ℓ2c (ζxx + ζyy) (4.11)

= ℓ2c ∆ζ.

Using the expression for the Laplacian operator in elliptic cylindrical coordinates

(Jeffrey, 1995), this can be rewritten as:

ℓ2c
a2(sinh2 u+ sin2 v)

(
∂2ζ

∂u2
+
∂2ζ

∂v2

)
= ζ. (4.12)

Eq. (4.12) must be solved subject to the linearized version of Eq. (4.10). Using

the assumption of small meniscus slopes, Eq. (4.10) becomes

sinhu0 cos v ζx + coshu0 sin v ζy ≈ − cos θ

√
cosh 2u0 − cos 2v

2
. (4.13)

As shown in Appendix 4.A, the analogue of Eq. (4.13) written in elliptic

cylindrical coordinates is

ζu = −a cos θ
√

cosh 2u− cos 2v

2
, (4.14)

at u = u0.

4.2.2 Solution by separation of variables

The differential equation (Eq. 4.12) can be solved by separation of variables. In

this method we seek a solution of the form

ζ = U(u)V (v), (4.15)

where U(u) and V (v) are only functions of u and v, respectively. Substituting

this into Eq. (4.12) and rearranging gives(
1

U

d2U

du2
− a2

ℓ2c
sinh2 u

)
+

(
1

V

d2V

dv2
− a2

ℓ2c
sin2 v

)
= 0. (4.16)
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4.2. Solution for small interface deformations

This equation can be separated into two separate equations:(
1

U

d2U

du2
− a2

ℓ2c
sinh2 u

)
= c, (4.17)

c+

(
1

V

d2V

dv2
− a2

ℓ2c
sin2 v

)
= 0, (4.18)

for some constant c. Finally, we may write:

d2U

du2
−
[(
c− a2

2ℓ2c

)
+

a2

2ℓ2c
cosh 2u

]
U = 0; (4.19)

d2V

dv2
+

[(
c− a2

2ℓ2c

)
+

a2

2ℓ2c
cos 2v

]
V = 0. (4.20)

For convenience, we define constants b and q with

b = c− a2

2ℓ2c
, (4.21)

q = − a2

4ℓ2c
, (4.22)

so that Eq. (4.19) and Eq. (4.20) become

d2U

du2
− (b− 2q cosh 2u)U = 0, (4.23)

d2V

dv2
+ (b− 2q cos 2v)V = 0. (4.24)

Written in this form, the second of these two equations is just the Mathieu

equation while the first is the modified Mathieu equation (McLachlan, 1964).

Their solutions are Mathieu functions and modified Mathieu functions, respec-

tively.

Consider the Mathieu equation Eq. (4.24) of which the solution is a Mathieu

function. There are two type of Mathieu functions: “even” and “odd”. For
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4. Elliptical cylinders at a liquid–gas interface

positive values of q, even Mathieu functions are denoted by

ce2n(v, q) =
∞∑
r=0

A
(2n)
2r cos 2rv, (4.25)

ce2n+1(v, q) =
∞∑
r=0

A
(2n+1)
2r+1 cos(2r + 1)v, (4.26)

and odd Mathieu functions are denoted by

se2n(v, q) =
∞∑
r=0

M
(2n)
2r sin 2rv, (4.27)

se2n+1(v, q) =
∞∑
r=0

M
(2n+1)
2r+1 sin(2r + 1)v. (4.28)

In these equations, 2n or 2n+1 is the order of the Mathieu function, A andM are

coefficients that depend on the order of the Mathieu function and the parameter

q. Because of the symmetric geometry of an elliptical cylinder, ζ (and therefore

V ) needs to be an even function of v with period π. Only even Mathieu functions

of even orders fulfill this criteria. Therefore V = ce2n(v,−q), noting that the

value of q given in Eq. (4.22) is negative. For positive q, such a Mathieu function

has the form given in Eq. (4.25). For negative q, this changes to (McLachlan,

1964)

ce2n(v,−q) = (−1)n
∞∑
r=0

(−1)rA(2n)
2r cos 2rv, (4.29)

and the general shape of such a Mathieu function is shown in figure 4.3 (a).

In the definition of the coefficients A
(2n)
2r , different authors have used different

normalization schemes. We use the following normalization method presented by

McLachlan (1964):

2
[
A

(2n)
0

]2
+

∞∑
r=1

[
A

(2n)
2r

]2
= 1. (4.30)

These even Mathieu functions satisfy the following orthogonality relations
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Figure 4.3: The Mathieu functions used in the solution of the meniscus around
an elliptical cylinder. (a) shows the even Mathieu function cem(v, q) and (b)
shows the modified Mathieu function Fekm(v, q). All the plots are for q = −0.2.
Blue curves (−) denote Mathieu functions of order m = 0, and red curves (−)
denote Mathieu functions of order m = 2.

(McLachlan, 1964):∫ 2π

0

cem(v, q) cep(v,−q)dv = 0,m ̸= p, (4.31)∫ 2π

0

ce2m(v, q)dv = π. (4.32)

The parameter b in Eq. (4.24) is constrained by the requirement that V be

periodic. In particular, b must be the Mathieu characteristic number for the given

order and parameter q.

Now we consider Eq. (4.23). As u → ∞, ζ (and therefore U) approaches 0.

To satisfy this condition, we must take

U = Fek2n(u,−q). (4.33)

Fek is the only type of modified Mathieu function (McLachlan, 1964) that reaches

zero at large U . It is given by

Fek2n(u,−q) =
p′2n

πA
(2n)
0

∞∑
r=0

A
(2n)
2r Ir(ke

−u)Kr(ke
u), (4.34)
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4. Elliptical cylinders at a liquid–gas interface

and examples for functions of this type is plotted in figure 4.3 (b). Here k =
√
|q|,

Ir is the modified Bessel function (Abramowitz and Stegun, 1964) of the first kind

and order r, and, Kr is the modified Bessel function of second kind and order r.

p′2n is a constant given by

p′2n =
(−1)nce2n(π/2, q)ce2n(0, q)

A
(2n)
0

. (4.35)

Substituting the expressions derived for U and V into ζ = UV and superposing

different orders of the Mathieu functions we find that the interface shape may be

written

ζ(u, v) =
∞∑
n=0

B2n Fek2n(u,−q) ce2n(v,−q). (4.36)

The coefficientsB2n must be chosen such that the boundary condition (Eq. 4.14)

is satisfied. Differentiation of Eq. (4.36) with respect to u at the boundary of the

cylinder u = u0 gives

ζu(u0, v) =
∞∑
n=0

B2n Fek′2n(u,−q) ce2n(v,−q). (4.37)

By differentiating Eq. (4.34) we obtain

Fek′2n(u,−q) (4.38)

=
p′2n
πA2n

0

∞∑
r=0

A
(2n)
2r

[
−keuIr(ke−u)Kr−1(ke

u)− ke−uIr−1(ke
−u)Kr(ke

u)
]
.

Substituting the expression derived for ζu in Eq. (4.37) to the boundary condition

in Eq. (4.14) gives

− a cos θ
√

cosh 2u− cos 2v

2
=

∞∑
n=0

B2nFek
′
2n(u,−q)ce2n(v,−q). (4.39)

B2n can be determined by making use of the orthogonality properties of the

function ce presented in Eqs. (4.31, 4.32). Multiplying both sides of Eq. (4.39)

by ce2n(v,−q), integrating from v = 0 to v = 2π, and applying the orthogonality
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4.2. Solution for small interface deformations

relations gives:

B2n = − a cos θ C2n√
2 π Fek′2n(u0,−q)

, (4.40)

where

C2n =

∫ 2π

0

ce2n(v,−q)
√
cosh 2u− cos 2v dv. (4.41)

The general meniscus prole may then be written

ζ(u, v) = −a cos θ√
2 π

∞∑
n=0

C2n Fek2n(u,−q) ce2n(v,−q)
Fek′2n(u0,−q)

. (4.42)

In the interest of simplicity, we would like to truncate this series. We find that

only the first two terms are required to properly explain the variation of the

meniscus height with v, and these two terms are sufficient to describe the proper

meniscus shape with acceptable accuracy (i.e. taking more terms does not lead

to any noticeable improvement). We therefore use

ζ(u, v) = −a cos θ√
2 π

1∑
n=0

C2n Fek2n(u,−q) ce2n(v,−q)
Fek′2n(u0,−q)

. (4.43)

Figures 4.4(a) and 4.5(a) show the meniscus shape produced by isolated el-

liptical cylinders of different ellipticity, calculated using the asymptotic solution

Eq. (4.43). The contours show that far away from the elliptical cylinder, the

meniscus is effectively axisymmetric. Figure 4.5(a) shows that for large aspect

ratio theres is a very significant deviation from this axisymmetry at close range.

This is further illustrated in Figure 4.6. The blue curves show the contact

line height calculated using Eq. (4.43). Here, α is defined as

α = arctan
(y
x

)
, (4.44)

where (x, y) is a location on the contact line in Cartesian coordinates. Regardless

of the aspect ratio of the elliptical cylinder, the contact line descends at the

pointed ends and rises at the sides for contact angles below π/2. This effect is

also mentioned in Hill and Pozrikidis (2011). For a cylinder with a large aspect

ratio, the drop of the contact line height at the tips is very sharp indeed.
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Figure 4.4: Shape of the meniscus created by an elliptical cylinder with small
aspect ratio, i.e. major axis s = 0.372 ℓc, minor axis t = 0.364 ℓc and s/t = 1.022,
at a water-air interface with θ = 70o γ = 72.4 mN m−1, ρl = 1000 kg m−3,
ρv = 0, ℓc = 2.717 mm. (a) is the asymptotic solution (Eq. 4.43) and (b) is
the numerical solution, with the colors representing log(ζ/ℓc). (c) shows the
relative error between the two solutions (Eq. 4.86). The numerical and asymptotic
solutions show good agreement with each other. The high relative error at the
edge of the domain is because the interface height is forced to reach 0 here in the
numerical solution.
60



4.2. Solution for small interface deformations

−5 0 5

−5

0

5

x/ℓc

y
/
ℓ c

 

 (a)

−3.5

−3

−2.5

−2

−1.5

−1

−5 0 5

−5

0

5

x/ℓc

y
/ℓ

c

 

 (b)

−4

−3

−2

−1

−5 0 5

−5

0

5

x/ℓc

y
/ℓ

c

 

 (c)

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Figure 4.5: Shape of the meniscus created by an elliptical cylinder with large
aspect ratio, i.e. s = ℓc, t = 0.037 ℓc and s/t = 27.027, at a water-air interface
with θ = 70o γ = 72.4 mN m−1, ρl = 1000 kg m−3, ρv = 0, ℓc = 2.717 mm.
(a) is the asymptotic solution (Eq. 4.43) and (b) is the numerical solution, with
the colors representing log(ζ/ℓc). (c) shows the relative error between the two
solutions (Eq. 4.86). As in figure 4.4, the numerical and asymptotic solutions
show good agreement with each other, except at the edge of the domain where
the interface height in the numerical solution is forced to reach 0.
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Figure 4.6: Contact line heights of meniscii created by an isolated elliptical
cylinder at air-water interface. (a): a cylinder with small aspect ratio (s =
0.372 ℓc, t = 0.364 ℓc, s/t = 1.022 ); (b) and (c): a cylinder with large aspect
ratio (s = ℓc, t = 0.037 ℓc, s/t=27.027), where (c) shows the complete data
range of (b). The physical properties are θ = 70o γ = 72.4 mN m−1, ρl =
1000 kg m−3, ρv = 0, ℓc = 2.717 mm. (•) denotes the contact line height obtained
using the numerical solution and solid blue curve (−) denotes contact line height
obtained using the asymptotic solution (Eq. 4.43 with u = u0). The numerical
and asymptotic solutions agree very well regardless of the aspect ratio of the
elliptical cylinder. Approximations for the contact line height were obtained using
Eq. (3.16) which gives the meniscus profile around a circular cylinder. Using this
equation, the meniscus height along the elliptical boundary of the cylinder was
calculated. solid green curve (−) denotes the contact line height calculated this
way using Eq. (3.16) with R = (s + t)/2, and dashed black curve (−−) is the
same calculation using Eq. (3.16) with R = RP .
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4.2. Solution for small interface deformations

4.2.3 Asymptotic calculation of the force of attraction

Once the shape of the meniscus created by one cylinder is known, we can deter-

mine the effect of the presence of another cylinder at a distance d (figure 4.1).

Assuming the meniscii of the two cylinders can be linearly superimposed, the ad-

ditional area of the second cylinder wetted by the liquid because of the interfacial

deformation due to the first cylinder is

∆A =

∫
l

ζ(uc, vc) dl, (4.45)

where (uc, vc) is a point on the contact line of the second cylinder expressed in

terms of elliptic cylindrical coordinates centred on the first cylinder, ζ is the

height of the meniscus created by the first cylinder, and l is the horizontal arc

length measured along the cylinder wall. We simplify the above expression by

assuming ζ(uc, vc) to be constant around the contact line on the second cylinder.

Then,

∆A ≈ P2ζ(u, v) (4.46)

where (u, v) is the location of the centre of the second cylinder and P2 =
∫
l
dl is

its perimeter. Now, using Eq. (4.7):

dl =

√
∂P

∂v
· ∂P
∂v

dv (4.47)

= aξ dv

where

ξ =

√
cosh 2u0 − cos 2v

2
. (4.48)

We therefore have that the perimeter of the second cylinder may be written

P2 =

∫ 2π

0

a2ξ2 dv, (4.49)
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4. Elliptical cylinders at a liquid–gas interface

where

a2 =
√
s22 − t22. (4.50)

The change of wetting energy of the cylinder surface is given by

∆E =
(
γ
(2)
sl − γ

(2)
sv

)
∆A (4.51)

= −γ cos θ2P2 ζ(u, v),

where γ
(2)
sl and γ

(2)
sv are the solid-liquid surface tension and the solid-vapour sur-

face tension for the second cylinder. The force of attraction can be obtained

by differentiating the above expression with respect to the distance between the

cylinders, we find that

F = −γ cos θ2 P2
∂ζ(u, v)

∂d
. (4.52)

If the location of the centre of the second cylinder is (x, y) in Cartesian coordinates

centred on the first cylinder, then the corresponding values of u and v are given

by

u = ℜ
[
arccosh

(
x+ iy

a1

)]
, (4.53)

v = ℑ
[
arccosh

(
x+ iy

a1

)]
. (4.54)

In this analysis, we consider two configurations of interaction, namely, side–to–

side interaction and tip–to–tip interaction between the cylinders. Since v remains

constant for these movements we have

∂ζ

∂d
=
∂ζ

∂u

∂u

∂d
. (4.55)
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4.2. Solution for small interface deformations

For the tip–to–tip interaction using Eq. (4.53) yields

u = arccosh

(
d

a1

)
, (4.56)

∂u

∂d
=

1√
d2 − a21

. (4.57)

Combining this with Eq. (4.55) produces

∂ζ

∂d
=

(
1√

d2 − a21

)
∂ζ

∂u
, (4.58)

and for this configuration we also have

v = 0. (4.59)

We substitute these results into Eq. (4.52) and use the first term of the infinite

series in the expression for ζ (Eq. 4.42) which gives the average meniscus height

with acceptable accuracy. This yields the force of interaction

Ftip−tip =
γ cos θ1 cos θ2 P2 C0 Fek′0(u,−q) ce0(0,−q)

π Fek′0(u0,−q)
√
2 (d2 − a21)

, (4.60)

where

u = arccosh

(
d

a1

)
, (4.61)

u0 = arctanh

(
s1
t1

)
, (4.62)

and

a1 =
√
s21 − t21. (4.63)
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4. Elliptical cylinders at a liquid–gas interface

For the case of side–to–side interaction:

u = arcsinh

(
d

a1

)
, (4.64)

∂u

∂d
=

1√
d2 + a21

, (4.65)

and

v = π/2. (4.66)

Using a similar calculation as for the tip–to–tip attraction we obtain

Fside−side =
γ cos θ1 cos θ2 P2 C0 Fek′0(u,−q) ce0(π/2,−q)

π Fek′0(u0,−q)
√

2 (d2 + a21)
, (4.67)

where u is given in Eq. (4.64), and u0 and a1 same as in the tip–to–tip calculation

(Eq. 4.62 and Eq. 4.63).

The blue and red curves in figure 4.7 show the force of attraction between pairs

of identical elliptical cylinders asymptotically calculated using Eq. (4.60) and

Eq. (4.67). As the two cylinders move closer, the tip–to–tip force becomes larger

compared to the side–to–side force. As they move further apart, the difference

between the side–to–side and tip–to–tip forces diminishes. This is similar to the

behaviour of forces of attraction in the two configurations predicted in Lehle

et al. (2008b) and experimentally observed by Loudet et al. (2005). (Note that

the curve showing the tip–to–tip force stops before the curve showing the side–

to–side force because in this configuration, the cylinders touch at larger values of

d).
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4.2. Solution for small interface deformations
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Figure 4.7: Force of attraction between pairs of elliptical cylinders. (a) and (b):
a pair of small cylinders with s = 0.0920 ℓc and t = 0.0092 ℓc; (c) and (d): a pair
of larger cylinders with s = 0.3600 ℓc and t = 0.0360 ℓc. The regions shown in
gray boxes are zoomed-in in the left panel. For both cases, the cylinder aspect
ratio is s/t = 10.000, and the physical properties are θ = 70o γ = 72.4 mN m−1,
ρl = 1000 kg m−3, ρv = 0, (ℓc = 2.717 mm. •) denotes the numerical solution for
side–to–side attraction, (�) denotes the numerical solution for tip–to–tip attrac-
tion, solid red curve (−) denotes the asymptotic result for side–to–side attraction
(Eq. 4.67), dashed blue curve (−−) denotes the asymptotic result for tip–to–tip
attraction (Eq. 4.60), and solid black curve (−) denotes the force of attraction
between two circular cylinders with R = RP , which is the equivalent radius ob-
tained in Eq. (4.84). The asymptotic results match with the numerical solution
at far range, and deviations occur at close range. Both methods of solution show
the force in the tip–to–tip configuration is larger than in the side–to–side con-
figuration. The approximation with the equivalent radius RP correctly captures
the far-range behaviour.
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4. Elliptical cylinders at a liquid–gas interface

4.3 Approximation of the meniscus far away from

the cylinder

As u → ∞, the contours of constant u in elliptic cylindrical coordinates tend to

circles with radius

r ∼ a coshu, (4.68)

and the angle measured around the centre of the cylinder tends to v so that:

α ∼ v. (4.69)

As described in McLachlan (1964), in this range, the Mathieu functions can be

approximated in a simpler form so that

Fek2n(u,−q) ∼ p′2n
1

π
K2n

(
2
√
−q
a

r

)
, (4.70)

where p′ is defined in Eq. (4.35). Using the definition of q from Eq. (4.22), on the

above equation:

Fek2n(u,−q) ∼ p′2n
1

π
K2n

(
r

ℓc

)
. (4.71)

Using this on Eq. (4.43), along with the definition of p′2n (Eq. 4.35) yields

ζ(r, α) = −a cos θ√
2 π2

∞∑
n=0

C2n (−1)nce2n(π/2, q)ce2n(0, q) ce2n(α,−q)
A

(2n)
0 Fek′2n(u0,−q)

K2n

(
r

ℓc

)
.

(4.72)

We simplify this expression by taking only the first term of the infinite series so

that:

ζ(r, α) = −a cos θ√
2 π2

C0 ce2n(π/2, q)ce2n(0, q) p
′
0 ce0(α,−q)

A
(2n)
0 Fek′0(u0,−q)

K0

(
r

ℓc

)
. (4.73)
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4.3. Approximation of the meniscus far away from the cylinder

We now compare this result with the height of meniscus around a circular cylinder,

which was given in Eq. 3.16 to be

ζcircular(r) = R cos θK0

(
r

ℓc

)
, (4.74)

and define an “effective radius” Reff so that the meniscus far away from an

elliptical cylinder is equivalent to that by a circular cylinder with radius Reff :

Reff (α) = −
a√
2 π2

C0 ce2n(π/2, q)ce2n(0, q) p
′
0 ce0(α,−q)

A
(2n)
0 Fek′0(u0,−q)

, (4.75)

and hence

ζ(r, α) = Reff (α) cos θK0(r/ℓc). (4.76)

If another elliptical cylinder is introduced at a distance d which is sufficiently

far away from the first cylinder the force acting on the second cylinder is given

asymptotically

F =
1

ℓc
Reff ,1(α) cos θ1 cos θ2K1(d/ℓc)P2, (4.77)

where P2 is the perimeter of the second cylinder. According to Newton’s third

law, the force acting on the first cylinder must be equal to the force acting on the

second cylinder i.e.

1

ℓc
Reff ,1(α) cos θ1 cos θ2K1(d/ℓc)P2 =

1

ℓc
Reff ,2(α + π) cos θ2 cos θ1K1(d/ℓc)P1.

(4.78)

Because of the periodicity of the Mathieu functions we have

ce2n(α) = ce2n(α+ π). (4.79)

Using this on Eq. (4.75) gives

Reff (α) = Reff (α + π). (4.80)

69



4. Elliptical cylinders at a liquid–gas interface

Then Eq. (4.78) simplifies to

Reff ,1(α)

Reff ,2(α)
=
P1

P2

. (4.81)

Because of the above relationship we hypothesize that Reff may approximately

be linearly related to P :

Reff (α) ≈ RP (α) (4.82)

= k(α)P. (4.83)

The following procedure was used to determine the constant of proportionality

k: For a selected value of the major axis s, an array of values were selected for

the minor axis t, ranging from t = 10−9ℓc to t = s − 10−10ℓc. As shown in

figure 4.8 (a) and (b), Reff (0) and Reff (π/2) were calculated for each t. P was

also calculated using Eq. (4.49). For most values of s and t, the ratio 2πReff /P

was reasonably close to 1. Then k(0) and k(π/2) were then determined by least

squares fitting of Reff with P . This then gives the approximation RP (Eqs. 4.82

and 4.82). Figure 4.8 (c) shows RP obtained by repeating the above procedure

for a wide range of values of s. It shows that when s≪ ℓc,

RP (0) ≈ RP (π/2) ≈
P

2π
. (4.84)

This result is very significant because it means that regardless of the ellipticity

of the cylinder, at far range, the meniscus is equivalent to one produced by a

circular cylinder with the same perimeter. Figure 4.8 (a) and (b) show that this

approximation is not affected by the aspect ratio of the cylinder. It only becomes

invalid when s is in the range of, or larger than, the capillary length, where the

meniscus height varies with v at far range as well. This simple approximation

of Reff by RP might be applicable to vertical objects with cross sectional shapes

other than ellipses as well. This prediction can be tested using numerical solutions

as future work.

The black curves in figure 4.7 show the force of attraction between pairs of

circular cylinders with radius RP (Eq. 4.84). This is a good approximation for the
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4.4. Numerical solution of the nonlinear Laplace–Young equation

force of attraction between two elliptical cylinders. At close range, this approxi-

mation represents an intermediate value between the asymptotically determined

side–to–side and tip–to–tip attraction forces which start to deviate from one an-

other.

4.4 Numerical solution of the nonlinear Laplace–

Young equation

Numerical solutions of the Laplace–Young equation were also computed for this

problem. The numerical scheme described in section 2.3 was used to solve the

nonlinear Laplace–Young equation and the nonlinear boundary condition for the

meniscus shape around two elliptical cylinders. Note that the numerical solu-

tions described here are of the fully nonlinear equation; this is in contrast to

the asymptotic solution of the previous section where the linearized problem was

solved.

As in section 3.3, the boundary condition and the Laplace–Young equation are

solved using an iterative method. The values of the nonlinear terms of the N th

step of this iterative scheme are obtained using the meniscus heights calculated

in the (N − 1)st step. The boundary condition (Eq. 4.10) is implemented as

sinhu0 cos v ζ
[N ]
x + cosh u0 sin v ζ

[N ]
y[ √

ζ2x + ζ2y + 1
][N−1]

= − cos θ

√
cosh 2u0 − cos 2v

2
. (4.85)

To determine the meniscus around an isolated elliptical cylinder numerically,

the nodes are positioned along ellipses originating from the cross section of the

cylinder. Each ellipse is obtained by adding an equal length to the major axis and

minor axis of the preceding ellipse. The added length is made gradually larger so

that the distance between consecutive ellipses increases. As a result, the density

of nodes is highest near the boundary of the cylinder where the meniscus slope

is the highest. Because an equal length is added to both the major axis and the

minor axis, the ellipses also become more and more circular towards the edge of

the domain. For each ellipse, u and a are calculated using Eq. (4.6) and Eq. (4.5)

respectively. A linear spacing in v is then selected and the locations of the nodes
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Figure 4.8: Obtaining an approximation for the effective radius Reff using
perimeter P . The first two figures show Reff calculated for a range of values
for minor axis t keeping the major axis fixed at (a): s = 0.01ℓc and (b):s = 0.1ℓc
(b). � is Reff (0) and ◦ is Reff (π/2). The equivalent radius RP , which linearly
depends on P , was obtained by least squares fitting of Reff vs P . Dashed blue
curve (−−) is RP (0) and dashed red curve (−) is RP (π/2). (c) shows the values
of RP obtained by repeating this calculation for a range of s, with (�) showing
RP (0) and (◦) showing RP (π/2). It shows that for sufficiently small cylinders
RP ≈ P/(2π).
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4.4. Numerical solution of the nonlinear Laplace–Young equation

are calculated using Eq. (4.2) and Eq. (4.3). This ensures a relatively higher

nodal density near the regions around the tips of each ellipse, which also has a

higher meniscus slope. When solving for the meniscus around a pair of cylinders,

the above procedure is carried out for each cylinder to position the nodes. In this

case, the ellipses are clipped along the centre line between the two cylinders to

avoid them intersecting each other, as in section 3.3.

Figures 4.4(b) and 4.5(b) show the numerically calculated meniscii shapes

produced by the code for isolated elliptical cylinders of different ellipticity. They

also show the relative error between the two solutions calculated as

E =
ζanalytical − ζnumerical

ζnumerical

. (4.86)

Regardless of the aspect ratio of the cylinder, the numerical and asymptotic

predictions match with each other very well. There is a discrepancy at the edge

of the domain because in the numerical solution, the meniscus height is forced to

satisfy ζ = 0 here, while in the asymptotic solution the meniscus height tends to

0 infinite distance away from the cylinder.

The red symbols in figure 4.6 show numerically obtained contact line heights

for elliptical cylinders of different ellipticity, and the blue curves show the predic-

tions of the asymptotic solution. The numerical and asymptotic solutions show

very good agreement with each other even for a cylinder with a large aspect ra-

tio. This shows that the asymptotic solution of the meniscus height is sufficiently

accurate even close to the cylinder.

As a point of reference, the green curves in the figure show the correspond-

ing meniscus height for a circular cylinder with radius R equal to the mean of

the lengths of the major and minor axes of the elliptical cylinders. The meniscus

height around a circular cylinder is given by Eq. (3.16), i.e. ζ(r) = R cos θK0 (r/ℓc),

where r is the distance from the centre of the cylinder. In performing this com-

parison, we take

r =
√
x2 + y2, (4.87)

where (x, y) is a point on the ellipse produced by the above boundary. r is then

substituted into Eq. (3.16) to obtain ζ. Because of the elliptical geometry, r is not

constant along the boundary. As a result ζ descends near the tips of the ellipse,
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Figure 4.9: Percentage error (Eh) between the contact line height around an
elliptical cylinder obtained using two methods: asymptotic solution for an el-
liptical cylinder and asymptotic solution for a circular cylinder. For the first
method, Eq. 4.43 gives the solution for the meniscus height around an elliptical
cylinder. Using u = u0 on this equation gives the contact line height. For the
second method, Eq. (3.16) gives the meniscus profile around a circular cylinder.
Using this solution for a circular cylinder with R = (s+ t)/2, the meniscus height
along the elliptical boundary of the cylinder was calculated. The physical prop-
erties of the system are θ = 70o γ = 72.4 mN m−1, ρl = 1000 kg m−3, ρv = 0,
ℓc = 2.717 mm. t is varied keeping s fixed at 0.372ℓc. Eh is calculated using
Eq. 4.88 for two different values of α. The red symbols (•) corresponds to α = 0,
and the blue symbols (•) corresponds to α = π/2. The error does not converge
to 0 at an aspect ratio of 1 because the asymptotic solution for a circular cylinder
is only accurate for far range distances of cylinders with R≪ ℓc.

where r is higher, and rises at the sides, where r is smaller, as seen from the figure.

The black curves are calculated in a similar way but using the radius R = RP ,

which is given in Eq. (4.84), rather than the mean. In summary figure 4.6 shows

that these approximations generally do not represent the observed contact line

shapes satisfactorily, especially for cylinders with large aspect ratios.

According to figure 4.6 (a), even when the aspect ratio of the cylinder as small

as 1.022, the prediction made by the circular cylinder approximation has an error

larger than 12%. This is effect further analyzed in figure 4.9. The percentage
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4.5. Numerical determination of the forces of attraction

error is calculated using

Eh =
hc,elliptical − hc,circular

hc,elliptical
× 100, (4.88)

where hc,elliptical is the contact line height given by the asymptotic solution for

the meniscus height around an elliptical cylinder Eq. (4.43) and hc,circular is the

meniscus height along the boundary of the elliptical cylinder obtained using the

asymptotic solution for the meniscus height around a circular cylinder Eq. 3.16

with R = (s + t)/2. Figure 4.9 shows that the error does not reach 0 even as

the aspect ratio approaches 1. This is caused by the asymptotic solution for the

circular cylinder losing its accuracy at short distance ranges relative to R, and

also at values of R close to ℓc.

4.5 Numerical determination of the forces of at-

traction

4.5.1 Force due to surface tension

As shown in figure 4.1, the surface tension force vector lies in the plane containing

n̂ (the outward unit normal to the surface of the cylinder) and b̂ (the binormal

to n̂ and the unit tangent to the three-phase contact line t̂). These vectors need

to be determined in order to calculate the force. We re-write n̂, which is already

given in Eq. (4.9), in a slightly different notation:

n̂ =
1

ξ
(sinhu0 cos v ex + coshu0 sin v ey) , (4.89)

with ξ given in Eq. (4.48). The position vector of a point on the three-phase

contact line is given in Cartesian coordinates by

P = a cos v coshu0 ex + a sin v sinhu0 ey + ζ ez. (4.90)
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The unit tangent vector t̂ can be obtained by differentiating this:

t̂ = −∂P
∂v

/∣∣∣∣∂P∂v
∣∣∣∣ (4.91)

=
1

τ

(
a coshu0 sin v ex − a sinhu0 cos v ey −

∂ζ

∂v
ez

)
,

where

τ =

√
a2ξ2 +

(
∂ζ

∂v

)2

. (4.92)

From this, we can calculate the unit binormal vector to n̂ and t̂ as:

b̂ = n̂× t̂ (4.93)

=
1

ξτ

(
− coshu0 sin v

∂ζ

∂v
ex + sinhu0 cos v

∂ζ

∂v
ey − aξ2 ez

)
.

As shown in Eq. (2.17), the contact angle θ is defined in the plane containing

b and n so that b̂ · γ̂ = cos θ, where γ̂ is the unit tangent to the liquid interface

in the above plane, which is also the direction of the surface tension force. We

define the surface tension force vector

γ = γ γ̂, (4.94)

where the scalar γ is the surface tension of the liquid-fluid interface. Consistently

with Eq. (3.2) the surface tension force acting on the cylinder is now given by

Fst =

∮
γ ds

where ds is an infinitesimal arc length along the contact line, which is now given

by

ds =

√
∂P

∂v
· ∂P
∂v

dv (4.95)

= τ dv.

In Eq. (3.5), the vector γ was decomposed into components in the directions
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4.5. Numerical determination of the forces of attraction

of b̂ and n̂ as γ = γ(n̂ sin θ+ b̂ cos θ). Using this result along with the expressions

for n̂ and b̂ (Eqs. 4.89, 4.93) we can obtain the components of γ in the x and y

directions:

γx = γ

[
1

ξ
sinhu0 cos v sin θ −

1

ξτ
coshu0 sin v

∂ζ

∂v
cos θ

]
, (4.96)

γy = γ

[
1

ξ
coshu0 sin v sin θ +

1

ξτ
sinhu0 cos v

∂ζ

∂v
cos θ

]
. (4.97)

Combining the two equations above with Eq. (3.2) and Eq. (4.95) we obtain

the force due to surface tension in the x direction as

F
(x)
st = γ

∫ 2π

0

(
τ

ξ
sinhu0 cos v sin θ −

1

ξ
coshu0 sin v

∂ζ

∂v
cos θ

)
dv, (4.98)

and the force due to surface tension in the y direction as

F
(y)
st = γ

∫ 2π

0

(
τ

ξ
coshu0 sin v sin θ +

1

ξ
sinhu0 cos v

∂ζ

∂v
cos θ

)
dv. (4.99)

4.5.2 Force due to hydrostatic pressure

The hydrostatic pressure force acting on an elemental area on the surface of the

cylinder is

d2Fhp = hρg dh dl, (4.100)

where ρ is the density of the fluid, h is the depth and l is as defined in Eq. (4.47).

Then the hydrostatic pressure force in the x direction is given by

F
(x)
hp =

∫ 2π

0

∫ ζ

0

hρg dh aξnx dv, (4.101)

where nx is the x component of the vector n̂ in Eq. (4.89). Performing the
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integration gives

F
(x)
hp =

1

2
a sinhu0∆ρg

∫ 2π

0

ζ2 cos v dv, (4.102)

where ∆ρ is the density difference between the two fluids. Similarly, the pressure

force in the y direction is given by

F
(y)
hp =

1

2
a coshu0∆ρg

∫ 2π

0

ζ2 sin v dv. (4.103)

4.5.3 Total force of attraction

The total force acting on one cylinder is then obtained by adding the surface

tension and the hydrostatic pressure forces together:

Fx = F
(x)
st + F

(x)
hp , (4.104)

Fy = F
(y)
st + F

(y)
hp . (4.105)

The blue and red symbols in figure 4.7 show the numerically determined force

of attraction between pairs of identical elliptical cylinders. As was found for

the asymptotic solution, the tip–to–tip force is larger than the side–to–side force

when the two cylinders are close to one another; as the objects move further

apart, the difference between the two forces diminish. When the two cylinders

are sufficiently far away from each other, the force predicted by the asymptotic

solution matches well with the numerical solution. As the objects move closer,

the numerical solution deviates from the asymptotic solution. This is due to the

inaccuracy of the approximations of linear superposition of the menicsi and small

meniscus slopes used in the asymptotic solution.

4.6 Concluding remarks on elliptical cylinders

An accurate numerical solution was developed to determine the meniscus shape

around a vertical elliptical cylinder by solving the nonlinear Laplace–Young equa-

tion. An asymptotic solution was also developed for the meniscus shape around
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an isolated elliptical cylinder. The three phase contact lines and meniscus pro-

files predicted by the two methods of solution agree very well even for elliptical

cylinders with large aspect ratios. Using the numerical solution, the meniscus

around a pair of elliptical cylinders was computed and the force of attraction be-

tween them was determined. The force was also estimated using the asymptotic

solution by linear superposition of the menisci from individual cylinders. Both

methods show that the force of attraction in the tip-to-tip configuration is higher

than that in the side-to-side configuration when the two cylinders are close to

one another. When the distance between the cylinders was sufficiently large, the

force in the two configurations was found to be the same.

Considering the properties of the asymptotic solution, it was found that the

meniscus created by an elliptical cylinder was identical to that created by a cir-

cular cylinder at large distances. The radius of this effective circular cylinder,

Reff , was also calculated. A simpler approximation for Reff was sought; when the

major axis of the elliptical cylinder was smaller than the capillary length, it was

found that the radius (RP ) of a circular cylinder with the same perimeter as the

elliptical cylinder was a very good approximation to Reff . The force of attraction

between a pair of circular cylinders with radius RP was found to be same as the

force of attraction between two elliptical cylinders at far range as predicted by

both the numerical and asymptotic solutions.
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4. Elliptical cylinders at a liquid–gas interface

4.A Deriving the linearized boundary condition

(Eq. 4.14) for the meniscus around an ellip-

tical cylinder

The elliptic cylindrical coordinates (see figure 4.2) have the following identities:

x2

cos2 v
− y2

sin2 v
= a2, (4.106)

x2

cosh2 u
+

y2

sinh2 u
= a2. (4.107)

Additionally, by differentiating Eq. (4.106) and Eq. (4.107) and substituting from

Eq. (4.2) and Eq. (4.3) we obtain

vx =
2 coshu sin v

−a cosh 2u+ a cos 2v
(4.108)

vy =
2 sinhu cos v

a cosh 2u− a cos 2v
(4.109)

ux =
1

a sinhu cos v + a coshu cothu sin v tan v
(4.110)

uy =
1

a coshu sin v + a sinhu tanhu cos v cot v
. (4.111)

In order to expression the boundary condition Eq. (4.13) in elliptic cylindrical

coordinates, we need to replace the x and y derivatives with u and v derivatives.

Using the chain rule:

ζx = ζvvx + ζuuy, (4.112)

ζy = ζvvy + ζuuy, (4.113)

substituting the identities given in Eqs. (4.108 - 4.111) into Eq. (4.112) and

(4.113) gives ζx and ζy in terms of u and v, which in combination with Eq. (4.13)

finally yields Eq. (4.14).
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Chapter 5

Floating (and sinking) of spheres

at a liquid–fluid interface

A defining (and simplifying) feature of the analysis presented in Chapters 3 and 4

is that the objects are assumed in a known configuration. This may be realistic

if the objects are supported by means of an externally applied force. In reality,

however, it is more common for the objects of interest to be floating e.g. the

range of animals that live on the surface of water. The mechanisms used by such

animals to support themselves on the surface of water were reviewed by Bush and

Hu (2006). Of these animals, the water strider has received significant attention

recently: These arthropods have a layer of hair on their legs which repel water,

and in turn, create a large surface tension force which supports their weight on

water (Bush et al., 2007; Gao and Jiang, 2004).

It is the balance between the object’s weight and the vertical restoring force

provided by surface tension that determines where the object sits at the interface

and hence the extent of the attraction between floating objects. However, if an

object is too heavy then surface tension may not be enough to support it at the

interface, and it may sink.

Determining under which conditions an object will float or sink is vital for

both understanding the selection pressures on water–walking insects (Vella, 2008)

and developing technologically viable self assembly methods. Vella et al. (2006a)

determined the maximum load that an infinitely long horizontally floating cylin-
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5. Floating (and sinking) of spheres at a liquid–fluid interface

der can support without sinking, while Liu et al. (2007) analytically determined

under which conditions a similar cylinder with an elliptical, triangular or hexago-

nal cross sections can remain floating. Kim et al. (2010) carried out experiments

and analytical solutions in search of a cross sectional shape of a horizontal cylin-

der that can remain floating under a maximum load. Out of the shapes they

tested, a cylinder with a “Y” shaped cross section was found to be the best.

While infinitely long cylinders are a useful paradigm within which to un-

derstand the water–walking of insects, floating spheres are of more interest for

practical applications. By means of a numerical solution, Vella et al. (2006a)

calculated the maximum density at which small spheres can float. This was ex-

perimentally studied by Extrand and Moon (2009), where they placed a sphere in

an empty container and gradually filled with a liquid to determine under which

conditions the liquid will float the sphere without engulfing it. Liu et al. (2009)

placed a sphere at a liquid interface, and determined its floating behavior by

varying the surface tension.

Multiple spheres placed at a liquid-fluid interface usually attract and produce

aggregates as shown analytically by Chan et al. (1981); Vella and Mahadevan

(2005), and experimentally by Dalbe et al. (2011). When multiple objects move

towards aggregation, their floating behaviour can be different from that of iso-

lated particles. This has previously been shown to be true for a pair of infinitely

long horizontal cylinders (Vella et al., 2006b). They showed that cylinders which

can float in isolation may sink as they approach one another. Several experiments

have been carried out to determine the collective floating behavior of particles:

Larmour et al. (2008) observed the loads supported by rough copper granules ag-

gregated on water, and Lu et al. (2012) also experimentally studied the loading

capacity of structures produced by aggregation of superhydrophobic aluminium

hexagons. However, unlike for infinite cylinders, there has been no theoretical

results predicting that the floating conditions of an aggregate of finite–sized par-

ticles can be different from the floating of a particle in isolation.

This chapter presents a precise numerical solution for the floating and sinking

behaviour of a multiple sphere system. For the first time, this proves that the

collective floating behaviour of spherical particles can indeed be different from

that of an isolated sphere. I also present an approximate “semi-analytical” solu-
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5.1. An isolated sphere

tion which is simpler, and yet captures some of the most interesting predictions

of the numerical solution.

Unlike the analyses presented in the previous chapters, the vertical force bal-

ance is taken into account here in determining the position of the sphere and hence

the contact line. There are three main forces which act on a sphere floating at a

liquid–fluid interface: the force of surface tension, the hydrostatic pressure force

exerted by the fluid, and the weight of the sphere itself. In the analysis pre-

sented here, we neglect any other interactions (e.g. electrostatic or dispersion) in

comparison to the above forces. The validity of this assumption depends on the

detailed surface chemistry of the spheres and their size. It is generally true for

spheres larger than a few tens of microns.

Since the vertical position of each floating sphere is not known a priori, the

position and shape of the three-phase contact line is also unknown. This fur-

ther complicates the problem because the form of the boundary condition and

the location at which it should be applied in order to solve the Laplace–Young

equation depend on the configuration of the three-phase contact line. In particu-

lar, for multiple spheres, the three-phase contact line does not lie in a horizontal

plane, making the solution of this problem especially difficult. In this chapter, I

present numerical and asymptotic results that address this problem.

For an isolated sphere floating at a liquid–fluid interface, as shown in figure 5.1,

the contact line is horizontal, and therefore the interfacial shape is axisymmetric.

It is a relatively simple matter to solve for the equilibrium of such a sphere. An

approximate analytical solution has been made for this system (Rapacchietta and

Neumann, 1977; Vella et al., 2006a), which is summarized in section 5.1. We then

consider a pair of spheres in section 5.2.

5.1 An isolated sphere

The setup of an isolated sphere is shown in figure 5.1, the inclination of the

meniscus to the horizontal plane at the contact line (ψ) is related to the contact

angle θ by

ψ = θ − ω. (5.1)
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ω
R

Fhp
Fst

Fw

Liquid l

Fluid f

-hc-ζm

θ
ψ

α
x

y

z

Figure 5.1: Configuration of an isolated floating sphere. This problem is simpler
than the case of many spheres because the contact line is horizontal. R is the
radius of the sphere, and θ is the contact angle. ω is the angle measured from
the centre of the sphere to any point on the contact line (for multiple spheres,
ω = ω(α)). The forces acting on the sphere are surface tension (Fst), buoyancy
(Fhp) and weight (Fw).

ζm is the depth of the contact line. Mansfield et al. (1997) presented the “Gen-

eralized Archimedes principle” which showed that for an object floating at a

liquid-gas interface, the total upwards vertical force is equal to the total weight

of liquid l displaced by the object and the meniscus around it. The weight of

liquid displaced by the meniscus is equal to the surface tension force, and that

displaced by the object is equal to the buoyancy force. Even if the upper fluid f

has a non-zero density, the force of buoyancy exerted by the liquid l is not affected

by the geometry of the object that is not in contact with this liquid. Vella and

Mahadevan (2005) applied this principle for a spherical object and showed that

the vertical hydrostatic pressure force exerted upwards on the sphere by liquid l

is equivalent to the weight of liquid l that would occupy the section of the sphere

immersed in liquid l and the volume of a cylindrical region with a cross section

equal to the cross section of the meniscus around the sphere and a height equal

84



5.1. An isolated sphere

to the meniscus depth −ζm. Similarly, the vertical hydrostatic pressure force of

exerted downwards on the sphere by the fluid f is the weight of liquid f that

occupies the above cylindrical region minus the part of the sphere immersed in

the fluid f . Therefore, the net vertical hydrostatic pressure acting upwards on

the sphere F
(z)
hp is:

F
(z)
hp = πR3 (ρl − ρf ) g

(
2

3
+ cosω − 1

3
cos3 ω − ζm

R
sin2 ω

)
+

4

3
πR3ρfg, (5.2)

where ρl and ρf are the densities of the liquid and fluid respectively. The surface

tension force acting on the sphere is given by

F
(z)
st = 2πγR sinω sinψ. (5.3)

In equilibrium, these two forces must balance the weight of the sphere, so we have

4

3
πR3ρsg =πR

3 (ρl − ρf ) g
(
2

3
+ cosω − 1

3
cos3 ω − ζm

R
sin2 ω

)
(5.4)

+
4

3
πR3ρfg + 2πγR sinω sinψ,

where ρs is the density of the sphere. ζm is the same as the meniscus depth of

a vertical cylinder with radius R sinω and contact angle ψ. Eq. (5.4) can be

simplified by assuming ψ to be small, which makes ζm → 0, and according to

Eq. (5.1), ω → θ. Using this assumption as in (Chan et al., 1981) we obtain the

approximate equilibrium condition of a single sphere to be:

sin(θ − ω) sinω =
R2 (ρl − ρf ) g

γ

[
2

3

(ρs − ρf )
(ρl − ρf )

− 1

3
− 1

2
cos θ +

1

6
cos3 θ

]
. (5.5)

Instead of using the above approximation, one can eliminate ζm from Eq. (5.4)

by obtaining a relationship between ζm and ψ from the numerical solution of the

Laplace–Young equation in cylindrical coordinates. (This is a one–dimensional

problem because of the axisymmetry of the meniscus). This method enables

accurate determination of the equilibrium of a single floating sphere and also

the maximum density of a sphere that can float, as demonstrated by Vella et al.
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Figure 5.2: A pair of spheres floating at a liquid interface. The contact angles
θ1 and θ2 give the boundary conditions where the interface meets the sphere. Far
away, the interface is required to return to the natural liquid level, indicated by
the horizontal dashed line.

(2006a).

However, there has been no solution to date for the equilibrium of a system of

spheres which are close enough for their interactions to be significant. Figure 5.2

shows such a system with two spheres, where the contact lines are not horizontal.

Unlike the case of a single sphere, one cannot assume axisymmetry of the meniscus

to solve this problem. In the following sections I develop an accurate numerical

solution which does not need such simplification, and also an approximate “semi-

analytical” solution for this problem.

5.2 Theoretical setting

5.2.1 Geometrical considerations

Figure 5.2 shows a pair of spheres floating at a liquid-fluid interface. For the

spheres to remain floating, each sphere needs to be in vertical equilibrium. Be-

cause of the complicated geometry of the three-phase contact lines, satisfying
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the boundary conditions and calculating the forces exerted by the fluids on these

spheres is no longer trivial.

For this calculation, we will find it useful to refer to spherical coordinates

(r, α, ϕ) centred on the centre of the sphere. The position vector P of a point on

the surface of the sphere (r = R) in relation to the centre of the sphere may then

be written:

P = R sinϕ cosα ex +R sinϕ sinα ey +R cosϕ ez, (5.6)

where ex, ey and ez are unit vectors in the x, y and z directions respectively

also centred on the centre of the sphere. In these coordinates, the position of the

contact line may be written:

ϕ = ω(α). (5.7)

We can define n as the running outward normal to the sphere surface along

the contact line, t as the running tangent to the contact line, and b as the running

binormal to n and t as shown in figure 5.2. Then we have

n̂ =
ˆ∂P

dr

∣∣∣∣∣
ϕ=ω

(5.8)

= cosα sinω ex + sinα sinω ey + cosω ez,

and

t̂ =
ˆdPc

dα
(5.9)

=
1

λ

[(
sinα sinω − cosα cosω

dω

dα

)
ex +

(
cosα sinω + sinα cosω

dω

dα

)
ey

+ sinω
dω

dα
ez

]
,

where

λ =

√
sin2 ω +

(
dω

dα

)2

, (5.10)

87



5. Floating (and sinking) of spheres at a liquid–fluid interface

is the normalization factor and

b̂ = n̂× t̂ (5.11)

=
1

λ

[(
cosα sinω cosω + sinα

dω

dα

)
ex +

(
sinα sinω cosω + cosα

dω

dα

)
ey

− sin2 ω ez

]
.

As given in Eq. (2.17), the contact angle θ is defined in the plane containing

b and n so that b̂ · γ̂ = cos θ, where γ̂ is the unit tangent to the liquid interface

in the above plane.

5.2.2 Forces acting on a sphere

Using the geometrical information obtained above, we now determine each of the

forces acting on the sphere.

5.2.2.1 Force due to hydrostatic pressure

We define buoyancy as the net vertical hydrostatic pressure force acting on the

sphere. The depth of a point on the surface of the sphere below the undeformed

interface is

h = −hc −R cosϕ, (5.12)

where hc is the height of the centre of the sphere above the undeformed liquid

level i.e. h < 0 when the sphere floats below the liquid level. The hydrostatic

pressure on the surface of the sphere relative to the undeformed interface level is

p = hρig, (5.13)

where i = l, f indicates the fluid in contact with the sphere. An elemental area

on the surface of the sphere is given in terms of variables R, α and ϕ by

dA = R2 sinϕ dϕ dα. (5.14)
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Then the buoyancy force F
(z)
hp , which is the vertical component of the hydrostatic

force, is given by

F
(z)
hp =

∫
− cosϕ p dA. (5.15)

Using the equation of the three-phase contact line ϕ = ω(α) to separate the

regions immersed in the two fluids we get

F
(z)
hp = R2g

∫ 2π

0

[
ρl
∫ π

ω(α)
(hc +R cosϕ) sinϕ cosϕ dϕ+

ρf
∫ ω(α)

0
(hc +R cosϕ) sinϕ cosϕ dϕ

]
dα. (5.16)

This gives

F
(z)
hp =

1

6
R2∆ρ g

∫ 2π

0

[
2R cos3 ω(α)− 3hc sin

2 ω(α)
]
dα +

4

3
πR3 ρ̄ g, (5.17)

where

∆ρ = ρl − ρf , (5.18)

and

ρ̄ =
ρl + ρf

2
. (5.19)

If the contact line is horizontal, i.e. ω is independent of α, the above expression

simplifies to

F
(z)
hp, ω =

1

3
πR2 ∆ρ g(2R cos3 ω − 3hc sin

2 ω) +
4

3
πR3 ρ̄ g. (5.20)

As well as giving a vertical buoyancy force, the hydrostatic pressure may give

rise to a net horizontal force on these partially submerged spheres. This horizontal
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component in the x direction in figure 5.2 is given by

F
(x)
hp =

∫
hρg sinϕ(− cosα)dA (5.21)

=

∫ ∫
R2ρg(hc +R cosϕ) sin2 ϕ cosα dϕ dα,

which yields

F
(x)
hp = R2g

∫ 2π

0

[
ρl

∫ π

ω(α)

(hc +R cosϕ) sin2 ϕ dϕ+

ρf

∫ ω(α)

0

(hc +R cosϕ) sin2 ϕ dϕ
]
cosα dα. (5.22)

This simplifies to

F
(x)
hp =

1

6
R2g

∫ 2π

0

[
(ρl − ρf )(3hc cosω sinω − 2R sin3 ω − ω) (5.23)

+3π hc ρl

]
cosα dα.

Since the last term of the above equation disappears upon integration, we find

that

F
(x)
hp =

1

6
R2 ∆ρ g

∫ 2π

0

(3hc cosω sinω − 2R sin3 ω − ω) cosα dα. (5.24)

5.2.2.2 Force due to surface tension

The direction of the surface tension force is given by γ̂ found in Eq. (2.17). We

define

γ = γ γ̂ (5.25)

where the scalar γ is the surface tension of the liquid-fluid interface. Same as in

Eq. (3.2), the surface tension force acting on the sphere is given by

Fst =

∮
γ ds
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where ds is an infinitesimal arc length along the contact line i.e.

ds = Rλ dα, (5.26)

with λ given in Eq. (5.10). As shown in Eq. (3.5), we can decompose the vector

γ as:

γ = γ(b cos θ + n sin θ).

Then using Eq. (5.8) and Eq. (5.11) we obtain the horizontal and vertical com-

ponents of γ:

γ · ex = γ

[
1

λ

(
cosα sinω cosω + sinα

dω

dα

)
cos θ + cosα sinω sin θ

]
. (5.27)

γ · ez = γ

(
−1

λ
sin2 ω cos θ + cosω sin θ

)
. (5.28)

Combining Eq. (5.27) and Eq. (5.28) with Eq. (3.2) and Eq. (5.26) we obtain the

vertical component of the force due to surface tension as

F
(z)
st = γR

∫ 2π

0

(
λ cosω sin θ − sin2 ω cos θ

)
dα, (5.29)

and the horizontal component of the force due to surface tension as

F
(x)
st = γR

∫ 2π

0

[
λ cosα sinω sin θ (5.30)

+

(
cosα sinω cosω + sinα

dω

dα

)
cos θ

]
dα.

If the contact line is flat, i.e. ω is constant, Eq. (5.29) reduces to

F
(z)
st, ω = 2πRγ sinω sin(θ − ω), (5.31)

which is same as Eq. (5.3) mentioned earlier for an isolated sphere. In addition,

91



5. Floating (and sinking) of spheres at a liquid–fluid interface

Eq. (5.30) gives that F
(x)
st = 0 in this case, as should be expected on symmetry

grounds.

5.2.3 Vertical balance for floating

The net vertical force acting upwards on a sphere at an interface is

N = F
(z)
st + F

(z)
hp − Fw, (5.32)

where Fw is the weight of the sphere given by

Fw =
4

3
πR3ρsg, (5.33)

and ρs is the density of the sphere. Substituting the expressions for F
(z)
st , F

(z)
hp

and Fw from Eq. (5.29), Eq. (5.17) and Eq. (5.33) into Eq. (5.32) we find that

N =γR

∫ 2π

0

(
λ cosω sin θ − sin2 ω cos θ

)
dα (5.34)

+
1

6
R2 ∆ρ g

∫ 2π

0

(2R cos2 ω − 3hc sin
2 ω)dα

− 4

3
πR3(ρs − ρ̄)g.

For the sphere to float in equilibrium, the vertical forces need to be balanced,

i.e.

N = 0. (5.35)

5.2.4 Meniscus profile around the spheres

The height of the liquid-fluid interface is given by z = ζ(x, y) which must satisfy

the Laplace–Young equation described in Eq. (2.11), and z = 0 represents the

unperturbed liquid level.

In consistence with what was introduced in Eq. (3.22), the boundary condition

for the meniscus in contact with the surface of a sphere is a fixed contact angle
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defined by n̂ · ŝ = cos θ. Here, ŝ, as given in Eq. (3.23), is the outward unit

normal vector to the liquid-fluid interface from a point on the contact line along

the plane containing b̂ and n̂. Substituting the expressions for ŝ and n̂ from

Eq. (3.23) and Eq. (5.8) respectively to this definition of θ yields the boundary

condition

ζx cosα + ζy sinα =
cosω − cos θ

√
ζ2x + ζ2y + 1

sinω
(5.36)

on the surface of a sphere. The second boundary condition on ζ is that

ζ(x, y)→ 0 (5.37)

as x, y →∞.

Implementing the boundary condition Eq. (5.38) is not straightforward, be-

cause ω and the location of the boundary are also unknown. This makes it

impossible to derive an exact analytical solution for the multiple sphere problem.

5.3 Numerical solution of force balance and Laplace–

Young equation

For a sphere floating in vertical equilibrium, the force balance Eq. (5.35),

the Laplace–Young equation Eq. (2.11) and the boundary condition Eq. (5.38)

need to be satisfied simultaneously. Since the boundary condition, horizontal

projection of the boundary, and the vertical force all involve ω and hc, which are

unknown, this is a free-boundary problem. As a result, solution of this problem

is not trivial and there are no published solutions that satisfy all of the above

three conditions. In order to develop approximate solutions, it is often assumed

that ω is constant (Chan et al., 1981) or Fw is negligible (Lehle et al., 2008a).

I developed an algorithm (Algorithm 1), given schematically on page 94, which

numerically solves this problem without making such approximations.

The solution of the Laplace–Young equation is performed on a horizontal

plane utilizing the hp--meshless cloud method (Liszka et al., 1996) introduced in
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Algorithm 1 Solve for a system of floating spheres

Require: Eh > eh, max {This is the difference of hc between two consecutive
steps of the iteration.}

Require: Eω > eω, max {This indicates the difference of ω(α) between two con-
secutive steps of the iteration}
Assume initial values hc and ω(α)

h
[1]
c ← hc
ω[1](α)← ω(α)

M ← 0
while Eh > eh, max or Eω > eω, max do
M ←M + 1
Calculate the horizontal projection of boundary:

X(α)← R cosω[M−1](α) cosα,
Y (α)← R cosω[M−1](α) sinα.

Distribute the nodes on the boundaries and in the domain,
Apply the boundary conditions Eq. (5.38) and Eq. (5.37),
Solve Laplace–Young Equation Eq. (2.11), and
Obtain ζm(α). {This is the meniscus height along the boundary.}
Move the sphere vertically (i.e. vary hc) and obtain:

ω(α)← cos−1

[
ζm(α)− hc

R

]
,

N(hc, ω) ← F
(z)
st (ω) + F

(z)
hp (hc, ω) − Fw. {This is the net force from

Eq. (5.32)}
Find hc where [N(hc, ω)]

2 is minimized and ∂N/∂hc ≤ 0:

h
[M+1]
c ← hc,
ω[M+1](α)← ω(α).

Nres ← N
(
h
[M+1]
c , ω[M+1]

)
. {This is the residual net force after the

minimization}
Calculate the errors:

Eh ← max
∣∣∣h[M+1]

c − h[M ]
c

∣∣∣.
Eω ← max

∣∣R [sinω[M+1](α)− sinω[M ](α)
]∣∣.

end while
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section 2.3. Since the solution depends on the unknown parameters ω(α) and hc,

we need to determine them in an iterative way. Firstly, initial guesses for ω(α)

and hc are used to find the horizontal projection of the three-phase contact line,

{X(α), Y (α)}. Then the nodes for the numerical solution are dispersed on the

boundary and in the domain.

For this distribution, the horizontal projection of the three phase contact line

around each sphere is fitted to a cubic spline (the radius of this projection Rh

is fitted as a function of α). The domain nodes are distributed along curves

obtained by adding constant values to Rh(α). These curves are clipped along the

centre line between the two spheres to avoid overlap. The constants added to

Rh(α) are selected in such a way that the density of nodes gradually decreases

from the horizontal projection of the contact lines towards the outer boundary

of the domain, because a higher nodal density is desirable near the regions with

largest meniscus curvature. The distance from the centre of a sphere to the outer

boundary of the domain was always kept above 7ℓc. This is sufficient to mimic

an infinite domain.

The Laplace–Young equation Eq. (2.11) is then solved using the boundary con-

ditions Eq. (5.38) and Eq. (5.37). To handle the nonlinear terms in the Laplace–

Young equation, iterative scheme given in Eq. (2.40) was used and for boundary

condition Eq. (5.38), the following was used:

[ζx cosα + ζy sinα]
[N ] =

cosω − cos θ
[√

ζ2x + ζ2y + 1
][N−1]

sinω
. (5.38)

This numerical solution gives the meniscus shape and the meniscus height at the

horizontal projection of the three-phase contact line, which is ζm(α). Now that we

have solved the Laplace–Young equation, we attempt to fulfill the force balance

criterion. The sphere is moved vertically up and down and new ω is calculated

using

ω(α) = arccos

[
ζm(α)− hc

R

]
. (5.39)

When the sphere moves vertically, hc in the above equation changes and ζm(α)

stays constant. Using hc and the resulting ω(α), the net force N acting on the

sphere may be calculated using Eq. (5.34). We then select the value of hc which
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minimizes N2. In some special cases, this minimum value of N can be zero.

Sometimes there are two solutions for N = 0. Because N is the net force acting

upwards and hc is a distance measured in the same direction, only a solution

which satisfies
∂N

∂hc
< 0 (5.40)

corresponds to a stable equilibrium of the sphere, in comparison to what was

presented by Rapacchietta and Neumann (1977) for an isolated sphere. However,

when there are no solutions of N = 0, we only get

∂N

∂hc
= 0 (5.41)

at minimumN . In order to force the algorithm to converge on a stable equilibrium

wherever possible, we set the general criteria for selecting a value for hc to be

minimizing N2 with
∂N

∂hc
≤ 0. (5.42)

Nres is the residual value of N after this minimization. Now using the new hc and

ω(α), we repeat the iterations until the difference between each of hc and ω(α)

are acceptably small between two consecutive steps. This process is summarized

in Algorithm 1.

5.4 Semi-analytical solution

Lo (1983) used the method of matched asymptotic expansions to calculate the

meniscus height ζm around a cylinder with R ≪ ℓc by solving the nonlinear

Laplace–Young equation. Here I develop a new approximate solution for multiple

spheres by making use of this result.

For a sphere with a horizontal contact line,

hc = ζm −R cosω. (5.43)

Now we take advantage of the fact that the meniscus around a sphere with a flat

contact line is identical to the meniscus around a vertical cylinder with radius
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5.4. Semi-analytical solution

R sinω and meniscus slope angle ψ = θ−ω. Therefore, combining Eq. (5.43) and

Eq. (5.1) with (3.19) from Lo (1983) we obtain the location of the centre of an

isolated sphere:

hc,s(ω) ≈ −R cosω +R sinω
[
c1 ln ϵ+ c2 + c3(ϵ ln ϵ)

2 + c4ϵ
2 ln ϵ+ c5ϵ

2
]
. (5.44)

where

ϵ =
R sinω

ℓc
≪ 1 (5.45)

and c1... c5 are given by Lo (1983):

c1 = − sin(θ − ω), (5.46)

c2 = sin(θ − ω)
[
ln 4− ln[1 + cos(θ − ω)]− Γ

]
,

c3 =
1

2
sin(θ − ω)

[
1 + sin2(θ − ω)

]
,

c4 = sin(θ − ω)

[
cos2(θ − ω)

(
Γ +

1

4
+ ln

1

4
[1 + cos(θ − ω)]

)
+

1

4
− cos(θ − ω)

]
,

c5 =
1

4
sin(θ − ω) cos(θ − ω)(ln 4− Γ)− q

cos(θ − ω)
+

1

4
sin(θ − ω)+

+ q(1− ln 4− Γ) +
1

4
sin3(θ − ω)

[
1

2
− Γ2 − ln2 2 + Γ ln 4− ln 2

]
+

+ ln[1 + cos(θ − ω)]

(
1

4
sin3(θ − ω)

[
ln 4− Γ +

1

cos(θ − ω)

]
+ q+

− 1

4
sin(θ − ω) cos(θ − ω)

)
+

− 1

4

(
ln[1 + cos(θ − ω)]

)2
sin3(θ − ω),
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5. Floating (and sinking) of spheres at a liquid–fluid interface

with

q =
1

4
sin(θ − ω)

[
1 + cos2(θ − ω)

]
ln [1 + cos(θ − ω)] + (5.47)

− 1

2
sin(θ − ω) cos2(θ − ω)(ln 4− Γ)− 1

4
sin(θ − ω)

√
1− sin(θ − ω).

(The subscript s indicates that Eq. (5.44) holds only for a single sphere, i.e.

the sphere is isolated.) Here Γ = 0.5772... is Euler’s constant. The shape of

the meniscus far away from this sphere can be obtained by solving the linearized

Laplace–Young equation. This solution is the same as that for a vertical cylinder:

ζ(r, ω) = −R sinω sin(θ − ω)K0(r/ℓc). (5.48)

If a second sphere identical to the first one appears at a horizontal distance d

away, it will create a meniscus that moves the first sphere vertically. The spheres

will thus have to reach an equilibrium with a new value of ω. Assuming the

contact lines remain flat we can write the new vertical location of the spheres as:

hc(ω, d) ≈ hc,s(ω)−R sinω sin(θ − ω)K0(d/ℓc). (5.49)

For a given value of ω, therefore, the problem is fully determined. We must

calculate the value of ω that gives a zero net vertical force acting on the sphere

(i.e. N = 0). We calculate N using Eq. (5.34) with a constant ω, with Eq. (5.49)

used to eliminate hc(ω, d). We thus have:

N(ω, d) =2πRγ sinω sin(θ − ω)+ (5.50)

+
1

3
πR2g(ρl − ρf )

[
2R cos2 ω − 3hc(ω, d) sin

2 ω
]
+ (ρl + ρf )2R+

− 4

3
πR3ρsg.

Unlike previous work on a single sphere, Eq. (5.50) is an equation for the value

of ω in equilibrium dependent on the inter-particle distance d. Therefore, solving

Eq. (5.50) for N = 0 gives ω as a function of the distance.

We now extend this result to a system of M identical spheres constrained

to reach equilibrium with identical values of ω. To check for this condition the
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5.5. Maximum density of an isolated floating sphere

following summation calculated based on a selected sphere m is used:

Sm =
M∑
n=1

dm,n (5.51)

where dm,n is the distance from the sphere m to sphere n. If

S1 = S2 = ... = SM (5.52)

the equilibrium ω for all the spheres in the system will be equal. Examples of

such arrangements of spheres are spheres spaced on a lattice, or on the vertexes

of an equilateral polygon. In such a case, Eq. (5.49) can be modified to

hc,m(ω, d) = hc,s,m(ω)−R sinω sin(θ − ω)
M∑
n=1

K0(dm,n/ℓc), (5.53)

with m being any sphere. This expression can be used in Eq. (5.50) as before.

5.5 Maximum density of an isolated floating sphere

5.5.1 Calculation neglecting buoyancy

As shown in figure 5.1, for a single floating sphere, ω is constant as should be

expected on grounds of symmetry. Then the vertical component of the surface

tension force T is given by Eq. (5.31). If the weight of the sphere is totally bal-

anced by the surface tension, we can write the force balance combining Eq. (5.32),

Eq. (5.31) and Eq. (5.33):

N = 2πRγ sinω sin(θ − ω)− 4

3
πR3ρwDg (5.54)

where ρw is the density of water and D = ρs/ρw is the relative density of the

sphere. From Eq. (5.31) we see that T is maximized when

ω = θ/2. (5.55)
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5. Floating (and sinking) of spheres at a liquid–fluid interface

In a solution for the equilibrium of an isolated sphere, Vella et al. (2006a) showed

that this result holds when the force of buoyancy is considerably small compared

to the surface tension. Substituting this to Eq. (5.54) and setting N = 0 gives

the maximum relative density of a sphere that can float with its weight totally

balanced by surface tension to be

Dmax ,T =
3γ sin2 θ

2

2ρwgR2
. (5.56)

If D ≤ Dmax ,T , the sphere floats and if D > Dmax ,T , the sphere sinks. This

equation also shows that surface tension alone can support spheres with very

large densities when R ≪ ℓc. Therefore, in the results where we analyze the

bahaviour of spheres close to sinking, we use fairly large radii in order to be able

to use moderate densities which can correspond to practical conditions.

Another way of determining whether the sphere is sinking or floating at a

given D is numerical minimization of |N | with respect to ω in Eq. (5.54), and

determining Nres , which is the residual value of |N | after the minimization. If

Nres is found to be on the order of the machine precision, we conclude that the

sphere is floating, while if Nres is several orders of magnitude higher than the

machine precision, there is no condition of equilibrium, and the sphere must

sink. Figure 5.3(a) compares the values of Nres obtained using this method with

Nres obtained using the numerical solution shown in Algorithm 1, also carried

out neglecting the buoyancy. The relative densities are normalized by dividing

with Dmax ,T obtained from Eq. (5.56). Since Nres obtained by the numerical

solution and numerical minimization of the analytical expression Eq. (5.54) are

both discontinuous at the value given by the analytical expression Eq. (5.56), we

conclude that checking whether Nres is above or below the machine precision is

an effective method of determining whether a sphere is sinking or floating. We

shall therefore employ a similar method to understand whether a pair of spheres

is floating or sinking.
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Figure 5.3: Residual net force Nres calculated (a) neglecting buoyancy (sec-
tion 5.5.1), and (b) considering buoyancy (section 5.5.2) for a sphere with R =
0.2209 ℓcm, and θ = 70o, at a water-air interface with ρl = 1000 kg m−3, ρf = 0,
γ = 72.4 mN m−1, ℓc = 2.7167 mm, Dmax ,T = 10.1167 and Dmax = 11.2839. (•)
and (H) show the numerical solution (Algorithm 1), with (H) representing zero
Nres . (•) is the numerical minimization of the analytical expressions Eq. (5.54)
and Eq. (5.57). When buoyancy is neglected, Dmax ,T is obtained by analytical
optimization Eq. (5.56), and this also matches very well with the values predicted
by the numerical solution and numerical minimization of the analytical expres-
sion Eq. (5.54). When buoyancy is considered, Dmax is obtained by a numerical
optimization of the analytical expression Eq. (5.57). This also matches with the
numerical solution. However, this is a slight discrepancy here because the result
from (Lo, 1983) used in Eq. (5.57) is a truncated asymptotic expression, which
loses its accuracy as R → ℓc. According to Eq. (5.56), spheres with such large
radii need to be used in order to achieve sinking at moderate densities.

5.5.2 Calculation considering buoyancy

When the force of buoyancy is taken into consideration, in addition to the sur-

face tension and weight, the net force acting on the sphere can be obtained by
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5. Floating (and sinking) of spheres at a liquid–fluid interface

combining Eq. (5.32), Eq. (5.20), Eq. (5.31) and Eq. (5.33)

N =2πRγ sinω sin(θ − ω) (5.57)

+
1

3
πR2g

[
(ρl − ρf )(2R cos2 ω − 3hc, s(ω) sin

2 ω) + (ρl + ρf )2R
]

− 4

3
πR3ρwDg,

with hc, s(ω) given by Eq. (5.44). Unlike in section 5.5.1 where buoyancy was

neglected, it is not possible to analytically minimize |N | with respect to ω due to

the complexity of Eq. (5.57). However, it is of course still possible to numerically

minimize |N |, and evaluate Nres to check whether a sphere is floating or sinking at

a given D. The highest density of a sphere that can float with its weight balanced

by both surface tension and buoyancy is defined as Dmax . Operationally, this is

found as the largest value of D which gives a Nres on the order of the machine

precision. Figure 5.3(b) compares the values of Nres obtained using the numerical

minimization of Eq. (5.57) and using the numerical solution Algorithm 1. There

is a good match between the results obtained using the two methods, except

for the inaccuracies in the result from (Lo, 1983) used in deriving Eq. (5.57) as

mentioned in the figure caption.

5.6 Vertical equilibrium of a pair of identical

spheres

5.6.1 Semi-analytical solution

Eq. (5.50) gives an approximate expression for the net vertical force acting on a

sphere when it is at a distance d from an identical sphere. Numerical minimization

of N with respect to ω gives Nres . As before, a value of Nres on the order of the

machine precision means an equilibrium exists, i.e. the object floats.
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Figure 5.4: The residual net force Nres as a function of the inter-particle distance
d for a pair of spheres with R = 0.2209 ℓcm, D = 11.3015 and θ = 70o, on a water-
air interface with ρl = 1000 kg m−3, ρf = 0, γ = 72.4 mN m−1, ℓc = 2.7167 mm
and Dmax ,single = 11.2839. (•) and (H) show the numerical solution (Algorithm 1),
with (H) representing zero Nres . (•) is the semi-analytical solution, which is the
numerical minimization of the analytical expressions Eq. (5.50). Meniscus cross
sections at the distances labeled with (a), (b) and (c) are plotted in figure 5.5.

5.6.2 Numerical solution of two spheres

Algorithm 1 is a general method, and it can be used to accurately solve for the

equilibrium position and meniscus for pair of spheres without using any assump-

tions. As an output, this algorithm also gives Nres .

Figure 5.4 shows the results from the numerical and semi-analytical solutions.

We emphasize that these results are for a density slightly larger than that at which

an isolated sphere can float (Dmax ,single). These spheres sink at far and close range

but, surprisingly, they are able to float at intermediate range! Figure 5.5 and

figure 5.6 illustrate the reasons behind this behaviour. As the spheres move closer

to one another, they move vertically downwards due to the meniscus created by

the other sphere. This increases the force of buoyancy acting on each sphere. As

shown in figure 5.7(b), the buoyancy acting on the spheres at the intermediate

range is larger than the maximum force of buoyancy that an isolated floating

sphere can achieve by varying ω. This can enable a sphere which would sink
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Figure 5.5: Cross sections along the principal axis of the liquid-air interface for
the pair of spheres shown in figure 5.4, in the regime where they float. Panels
(a), (b) and (c) are for the correspondingly marked locations in figure 5.4. The
behaviour is explained in the schematic diagrams in figure 5.6
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Figure 5.6: As the spheres move closer, their centres move downwards and their
contact lines become more tilted. These are schematic diagrams corresponding
to the cross sections in figure 5.5 (a), (b) and (c) respectively.

104



5.6. Vertical equilibrium of a pair of identical spheres

0.5 1 2 4

10
−0.054

10
−0.052

10
−0.05

10
−0.048

d/ℓc

F
(z
)

st
/
F
w

Sinking Floating Sinking

F
(z)
st, max, single

Fw

(a)

0.5 1 2 4

10
−0.98

10
−0.96

10
−0.94

d/ℓc

F
(z
)

h
p
/
F
w

Sinking Floating Sinking

F
(z)
hp, max, single

Fw

(b)

Figure 5.7: Vertical Forces of surface tension (a) and buoyancy (b) acting on
each of the spheres in figure 5.4. (•) is the numerical solution and the solid
curve is the semi-analytical solution described in section 5.4. The dashed lines
separate the regimes of sinking and floating. The dotted lines show the maximum
values of vertical surface tension and buoyancy forces that the fluids can exert
on an isolated floating sphere (determined by maximization of these forces with
respect to the variable ω). As the spheres move close to one another, the force of
buoyancy exceeds the maximum for an isolated sphere, while the force of surface
tension reduces. The semi-analytical solution predicts the same behaviour as the
numerical solution in the region where the sphere floats. Note that the surface
tension is always significantly larger than the force of buoyancy.

in isolation to float as part of a pair. This brings new insight to the physics

of floating spheres, because such a dependence of the floating and sinking on

the inter-particle distance has not been reported previously. We also emphasize

that this effect is due to the hydrostatic pressure, which is usually neglected in

analyzing capillary interactions.

As shown in figure 5.7, the force of surface tension is significantly larger than

the force of buoyancy, and therefore more important for the vertical equilibrium

of the sphere. The vertical force of surface tension acting on any infinitesimal

length along the contact line is maximized when ω = θ/2 see Eq. (5.55). As

the spheres move close together, the contact line becomes highly sloped (i.e. the

variation of ω along the contact line increases) and, as a result, the force of surface

tension does not take its maximum value all along the contact line. Figure 5.7(a)
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5. Floating (and sinking) of spheres at a liquid–fluid interface

shows that while the surface tension contribution remains high at far range, it

drops as the spheres move close to one another. This causes the spheres to sink

again at very close range, as observed in figure 5.4. A similar close range sinking

effect has been demonstrated for horizontally floating infinite cylinders by Vella

et al. (2006b), where the cylinders float only at far range.

Figure 5.8 shows a regime diagram for the sinking and floating behaviours

of identical spheres. As mentioned before, Dmax ,single is the maximum density

of an isolated sphere that can float. Our results show that at some densities

above Dmax ,single , a pair of spheres can float. This occurs in an intermediate

range of inter-particle distances. The spheres sink at far range due to the relative

reduction of the buoyancy force, and at near range due to the excessive tilting of

the contact line and resulting reduction of the surface tension force. The results

also show that at densities below Dmax ,single a pair of spheres can sink at close

range, again due to the excessive tilting of the contact line as shown in figure 5.6.

The maximum density at which the two spheres can remain floating at any inter–

particle is smaller than Dmax ,single .

Using the analytical solution Eq. (5.50), we can maximize ρs having ω as the

variable keeping N(ω, d) within the machine precision. This gives an independent

semi-analytical prediction for Dmax (d), which gives an approximation for the

long-range sinking behaviour. However, this approximated treatment is unable

to predict the short range sinking behaviour because it assumes that the contact

line remains flat, whereas this short range sinking is known to be due to the

tilting of the contact line.

5.7 Vertical equilibrium of a hexagonal lattice

of spheres

We now consider an infinite hexagonal lattice of spheres as shown in figure 5.9(a).

The numerical solution of this configuration is performed by solving for a single

floating sphere using Algorithm 1 in a domain such as the one shown in fig-

ure 5.9(b). The boundary condition in the outer boundary of the domain is set
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Figure 5.8: Regime diagram showing the sinking and floating behaviour for a
pair of spheres with R = 0.2209 ℓc, and θ = 70o, at a water-air interface
with ρl = 1000 kg m−3, ρf = 0, γ = 72.4 mN m−1, ℓc = 2.7167 mm and
Dmax ,single = 11.2839. The symbols show the numerical solution (Algorithm 1),
with (•) denoting floating spheres and (H) denoting sinking spheres. The solid
curve shows Dmax (d) as calculated using the semi-analytical solution Eq. (5.50).
The numerical solution shows that spheres with densities above Dmax ,single can
float as a part of a pair in an intermediate inter-particle distance range, and even
spheres with densities below Dmax ,single can sink at very close range. The semi-
analytical solution correctly predicts the the maximum density as a function of
inter-particle distance when the inter-particle distance sufficiently large so that
the close-range sinking effect is not significant.
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Figure 5.9: (a) Configuration of an infinite hexagonal lattice of spheres. The char-
acteristic inter-particle distance d is defined as the distance between the centres
of two nearest neighbours. (b) Meniscus profile obtained by numerical solution of
(a) in a hexagonal domain with the boundary condition Eq. (5.58). The numerical
solution was carried out for a hexagonal lattice of spheres R = 0.2209 ℓc, θ = 70o,
D = 13.4839 and d = 0.5310ℓc on a water-air interface with ρl = 1000 kg m−3,
ρf = 0, γ = 72.4 mN m−1 and ℓc = 2.7167 mm. The dots represent the locations
of nodes used for the numerical solution, with the colours denoting ζ/ℓc.
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-ζ

Figure 5.10: The infinite hexagonal lattice of spheres in figure 5.9 is also equiv-
alent to the system shown here. A single sphere is floating in the centre of a
vertical tube with a hexagonal cross section made of a material with a contact
angle of 90o. The tube is inside an external liquid bath. The interfacial heights
are measured relative to the (zero-curvature) liquid level of the bath. As a result
all the values of ζ in figure 5.9 (b) are negative.

to be

∂ζ

∂nb

= 0, (5.58)

where nb is a distance in the direction normal to the boundary. This system is

also experimentally equivalent to a single sphere floating at an interface contained

within a vertical tube with a hexagonal cross section made of a material with a

contact angle of 90o. The tube is situated in a bath of liquid (see figure 5.10).

The pressure in the outer bath can communicate with the tube. The interfacial

height ζ is thus measured with respect to the surface where the curvature (and

hence the pressure difference between the interface) is zero in the external bath.

Figure 5.11 is a regime diagram showing the sinking and floating for the hexag-

onal lattice of spheres. We observe that spheres with densities above Dmax ,single

may float when the characteristic inter-particle distance d is not too high. The

floating is possible at much higher densities above Dmax ,single compared to the

case of pairs of spheres, because each sphere interacts with a large number of

other spheres here.

Unlike the case of a pair of spheres, we do not observe sinking at close range.

To understand this observation, recall that for a pair of spheres, the close range

sinking is due to the tilting of the contact line to one side. However, in a hexagonal
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Figure 5.11: Regime diagram showing the sinking and floating behaviour for an
infinite hexagonal lattice of spheres with R = 0.2209 ℓcm, and θ = 70o, on a water-
air interface with ρl = 1000 kg m−3, ρf = 0, γ = 72.4 mN m−1, ℓc = 2.7167 mm
and Dmax ,single = 11.2839. The symbols show the numerical solution (Algorithm
1), with (•) denoting floating spheres and (H) denoting sinking spheres. The
solid line is Dmax (d) calculated using the semi-analytical solution Eq. (5.50).
Both the numerical and semi-analytical solutions show that spheres with densities
significantly larger than Dmax ,single can float as the spheres approach close to each
other. The accuracy of the semi-analytical solution reduces at very close range.

110



5.8. Concluding remarks on the floating and sinking of spheres

lattice, each sphere is affected by spheres in every direction, and as a result, there

is no overall tilting of the contact line. This is the reason for the absence of a

close-range sinking regime.

When d is very small, the domain used for the numerical solution (figure 5.9b)

becomes very small compared to the size of the sphere. As a result, Algorithm 1

fails to converge in this region. This is the reason for the absence of data points

at very close range in figure 5.11. However, looking at the trend of the boundary

line between the floating and sinking regimes as d→ 0 we can expect that there

will be no close range sinking regime.

Similar to the case of the pair of spheres, we use Eq. (5.50) to develop an

analytical solution for Dmax (d), by maximizing ρs keeping N(ω, d) within the

machine precision. Here, for the calculation of hc, Eq. (5.53) is used with a large

M so that the meniscus height resulting from the sphere located farthest away is

on the order of machine precision. As shown by the solid curve in figure 5.11, this

solution is able to predict the boundary between the floating and sinking regimes

fairly well. However, when the characteristic distance between the spheres is very

small, this solution becomes less accurate compared to the numerical solution

because the approximation of linear superposition of meniscii and the long-range

asymptotic solution of the meniscus used in deriving Eq. (5.50) both fail in this

range.

5.8 Concluding remarks on the floating and sink-

ing of spheres

A numerical solution was developed utilizing a new algorithm which accurately

solves for the equilibrium of multiple floating spheres. An independent semi-

analytical solution which successfully approximates the results of the numerical

solution was also developed. For the first time, we showed that the floating and

sinking of spheres can also depend on the distances among them. For a pair of

spheres, there is a limited range of intermediate distances in which they float

even if their density is above the maximum density of a single sphere that can

float (Dmax ,single). Moreover, we found that even at densities below Dmax ,single ,
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5. Floating (and sinking) of spheres at a liquid–fluid interface

the spheres can sink at very close range, replicating an observation made for

cylinders by Vella et al. (2006b). For a hexagonal lattice of spheres, we show that

the effect of floating above Dmax ,single is even more significant while the effect of

sinking below Dmax ,single is absent.
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Chapter 6

The capillary attraction between

pairs of floating particles

In this chapter, I use the method of numerical solution presented in the previous

chapter to calculate the force of attraction between a pair of floating spheres.

The capillary forces are also determined experimentally here.

There have been earlier experimental studies on this problem by Dalbe et al.

(2011); Vassileva et al. (2005). These studies involved placing pairs of spherical

particles at liquid–fluid interfaces, and (by means of particle tracking) measuring

their relative velocities. The results were then fitted using combined asymptotic

expressions for the force of capillary attraction and hydrodynamic drag at low

Reynolds numbers. Their results are reproduced in figure 6.1. While the results

in figure 6.1 (a) agree with the asymptotic predictions, the results in figure 6.1 (b)

deviate at far range. Since the asymptotic expressions are expected to be more

accurate at far range compared to close range, it would be more appropriate to fit

only using the far–range data. Our experimental data presented in this chapter

is fitted in this way, and hence shows good agreement at far–range. For some

types of particles, we observe clear deviations at close range, which seem to imply

a deficiency in the description of either the hydrodynamic drag, or the capillary

attraction force. We also extend our experiments for non–spherical particles.

The expressions for both hydrodynamic interaction and capillary interaction

used for the fitting are based on several simplifying assumptions. In contrast, our
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6. The capillary attraction between pairs of floating particles

(a)

white text
white text

(b)

Figure 6.1: Experimental results on capillary interaction between floating
spheres reprinted from (a) Vassileva et al. (2005) and (b) Dalbe et al. (2011).
The relative velocities vrel of different particles at liquid–fluid interfaces are plot-
ted as a function of the inter–particle distance. In (a), d is the inter–particle
distance, Rp is the radius of a particle, and in (b), l is the inter–particle distance,
Lc is the capillary length, and KG is same as the constant CF , which will be
introduced later in this chapter (Eq. 6.8). (a) also includes an inset showing the
force of capillary attraction F . The symbols show experimental results, and solid
curves show results of fitting this data to asymptotic predictions. Results in (a)
agree with the asymptotic solution, whereas the results in (b) deviate at large
inter–particle distances.
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6.1. Asymptotic results for flotation interactions

numerical solution gives an accurate solution for the force of capillary attraction.

We use this solution to suggest possible reasons for the discrepancy between the

experimental data and the asymptotic predictions.

6.1 Asymptotic results for flotation interactions

An asymptotic prediction for the force of capillary attraction between a pair of

identical floating spheres has been derived by Chan et al. (1981), assuming small

meniscus slopes and linear superposition of the menisci:

F = 2πγ R B5/2 Σ2K1(d/ℓc). (6.1)

Here B is the “Bond number” given by

B =
R2

ℓ2c
, (6.2)

and

Σ =
2 (ρs − ρl)
3 (ρf − ρl)

− 1

3
− 1

2
cos θ +

1

6
cos3 θ. (6.3)

In addition to this capillary force two floating spheres moving relative to each

other also interact hydrodynamically. Balancing the attractive capillary force

with the hydrodynamic drag, the relative velocity of a pair of particles (Dalbe

et al., 2011; Vassileva et al., 2005) gives:

v = CHG(r)F (d) (6.4)

where r = d/R, G(r) is the hydrodynamic mobility (Batchelor, 1976), and CH

is a constant that depends on the geometry of the sphere and viscosity of the

liquid, and which also accounts for the fact that the sphere is at the interface

rather than in the bulk. By interpolating values tabulated by Batchelor (1976)

for small Reynolds numbers and small capillary numbers, Dalbe et al. (2011) gave

a formula for the hydrodynamic mobility:

G(r) = 1− 3

2r
+

1

r3
− 15

4r4
− 4.46

1000 (r − 1.7)−2.867
, (6.5)
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6. The capillary attraction between pairs of floating particles

where r is the distance between the particles divided by the particle radius R.

It should be emphasized that this formula is only strictly valid if the sphere is

totally immersed in the bulk liquid; having it partially submerged gives rise to an

error. (There is no analytical expression for the fluid flow around solid objects at

the interface of fluids with different viscosity.)

6.2 Experiments on the behaviour of floating

spheres

6.2.1 Determination of the contact angle

A spherical particle made of Teflon (relative density D = 2.2) with a nominal

diameter of 1/16 in (i.e. radius of 794 µm), from Bal-tec Inc., USA (product

number: 14032) was used in this experiment. The particle was placed on the

surface of a 50 vol% glycerol–water solution with density ρl = 1126 kg m−3,

surface tension γ = 68.0 mN m−1, and capillary length ℓc = 2.48 mm. The

fluorescent dye Rhodamine was added to the liquid. The use of glycerol reduced

the movement of the particle due to environmental effects. Using a Leica DM600B

fluorescence confocal microscope, images of a single particle were recorded in a

series of horizontal planes (z stack). At each plane, a fluorescence image and

a bright field image were recorded simultaneously, at a resolution of 512 × 512

pixels. The vertical gap between two consecutive imaging planes in the z-stacks

was 6.18 µm. These images allowed for the contact angle to be measured.

Figure 5.1 schematically shows the floating particle and introduces the sym-

bols used in the calculations in this section. Figure 6.2 shows the fluorescence

images taken at two horizontal planes intersecting the particle. The regions with

the presence of the liquid is bright because of the fluorescent dye, and the areas

occupied by the particle and air is dark. In figure 6.2 (a), the imaging plane is

totally beneath the liquid surface. The boundary of the particle on the imaging

plane is a circle. The centre Cs of this circle is obtained using the higher–contrast

bright field image obtained alongside the fluorescence image. Using this centre

Cs, a circle is drawn to match the particle–liquid boundary in the fluorescence
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6.2. Experiments on the behaviour of floating spheres

image by selecting the largest circle for which the mean brightness of the pixels

along the perimeter does not exceed a specified threshold tc. This circle is shown

in white in the image. The imaging plane in Figure 6.2 (b) has a region of air,

and as a result, the fitted circle is outside the spherical particle.

The radii of these circles are then plotted in figure 6.3. A circle is fitted to

the data shown in the figure in order to determine the centre of the sphere. Only

the high-contrast images are selected for this fitting, as shown by the solid line.

(Towards the bottom of the sphere, the slope of the surface of the sphere reduces,

and as a result, the contrast of the fluorescent images also reduces). This gave the

radius of the sphere to be 818± 2µm. The radii of the horizontal circles start to

deviate from the radii of the cross sections of the sphere once it meets the liquid

meniscus. It was observed that the location where this deviation occurs does not

significantly depend on the value of the threshold tc used in selecting the white

circles shown in figure 6.2, as long as it properly captured the boundary of the

sphere in the imaging planes that are totally beneath the liquid surface. Using

this location of the deviation, and the centre of the sphere, ω was calculated to

be 98.6 ± 0.1o. hc was also obtained from this graph by measuring the vertical

position of the centre of the sphere relative to the vertical position of the lowest

imaging plane where the fitted circle is fully away from the fluorescence image.

According to the vertical force balance on the sphere,

F
(z)
hp, ω + F

(z)
st, ω = Fw, (6.6)

where F
(z)
hp, ω, F

(z)
st, ω and Fw are given in Eq. (5.31), Eq. (5.20) and Eq. (5.33)

respectively. Solution of Eq. (6.6) using ω, hc and R obtained as described above,

gives θ = 103.0± 0.1o.

6.2.2 Experiments on velocities of attraction

6.2.2.1 Materials and methods

The experiments are carried out using particles floating at a liquid–air interface.

The liquid, a solution of 50% (by volume) glycerol solution (the same as that

used in section 6.2.1, without the fluorescence dye), was contained in a petri dish
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6. The capillary attraction between pairs of floating particles

(b)(a)

Figure 6.2: Fluorescence confocal microscopy images of the meniscus around a
spherical Teflon particle floating at the interface of a 50 vol % glycerol–water so-
lution and air, recorded in two horizontal planes. (Such a particle is schematically
shown in figure 5.1). The fluorescence dye Rhodamine is added to the liquid. In
(a), the imaging plane is totally beneath the liquid surface, with z = −272 µm,
and in (b), the imaging plane intersects the meniscus, with z = −68 µm, where
z is the height measured from a location of negligible meniscus deformation. The
centre Cs of the cross section of the sphere at each imaging plane is obtained using
separate bright field images. The largest circle that is centred on Cs,and of which
the average brightness of pixels along the perimeter does not exceed a threshold
tc is then determined for each image. This is shown in white. When the imaging
plane is totally under the liquid, this circle coincides with the boundary of the
cross section of the sphere. When the imaging plane intersects the meniscus, the
circle deviates away from the sphere.

with diameter 14 cm. The presence of glycerol reduced the Reynolds number,

enhancing the applicability of Eq. (6.5) to the experimental system. Two types of

spherical particle types are used in the experiment: the Teflon spheres described

in section 6.2.1 and Chrome steel (D = 7.8) spheres with nominal diameter

0.010086 in (i.e. radius 128 µm) from Bal-tec, USA (product number: 48521),

along with non-spherical particles: Sodium Chloride crystals with approximate

diameter 4 mm and D = 2.2 and “Science Museum Hydrophobic Sand” from

London Science Museum with irregular shape, approximate radius 360 µm and

D = 1.5. Pairs of particles of the same type are carefully placed on the liquid

surface, and images are recorded at constant time intervals. For the chrome steel
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Figure 6.3: (◦) shows the radii of the circles in the horizontal confocal sections
(z stacks) such as those in figure 6.2, for a Teflon sphere floating on a 50 vol
% glycerol–water solution. A circle is fitted to the data range denoted by the
solid curve to determine the radius and the centre of the spherical particle. The
resulting circle is shown by the dashed curve. This enables the calculation of ω
and hc.

particles, a Zeiss Axioplan II microscope with a magnication of 2.5 is used with a

CCD camera (Allied Vision Technologies Stingray F-033, resolution 1040× 1388

pixels). Since all other particles are sufficiently large, the same CCD camera is

used with a photographic lens (Micro–Nikkor 105 mm from Nikon).

These experiments on the movement of particles were carried out by Peter

Saunders, Part III student in the Department of Physics, University of Cam-

bridge.

6.2.2.2 Image analysis, particle tracking and velocity calculation

The images are analysed using Matlab. Particles are differentiated from the back-

ground by selecting pixels above a threshold brightness. Two methods are used

to remove noise: requiring the area of each particle to be higher than a threshold

value, and requiring the brightness of the brightest pixel within a particle to be

above a threshold. The movement of the particles is tracked by connecting each

particle in one image to the particle in the next image that is located closest to

the position of the particle in the original image. Then using the details of the

frame rate used, the relative velocities of the particles are calculated. Figure 6.4
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Figure 6.4: Experimental results for the relative velocities of a pair of spherical
particles at a liquid interface. The liquid is a 50 vol% glycerol solution with
density ρl = 1126 kg m−3, surface tension γ = 68.0 mN m−1, capillary length
ℓc = 2.48 mm and viscosity µ = 6 mPa S. The particles are Teflon spheres with
relative density D = 2.2, radius R = 0.33 ℓc and contact angle θ = 103o. Symbols
with different colours are different trials of the same experiment. The black curve
is a fit using Eq. (6.7) carried out treating results from all the trials as a single
data set. The solid part of this curve shows the data range used for the fitting,
and the dashed part is the prediction from the fitted expression.

shows the relative velocities of pairs of Teflon spheres calculated this way.

To analyse this data, we combine Eq. (6.4) and Eq. (6.1) to find

v = CFG(r)K1(d/ℓc), (6.7)

where CF is a constant given by

CF = 2πγ R B5/2 Σ2CH , (6.8)

and CH is another constant that was introduced Eq. (6.4). Using Eq. (6.7), the

velocity data shown in figure 6.4 were fitted by adjusting the parameter CF .

The figure shows that Eq. (6.7) is a good approximation at large inter-particle

separations. However, the velocities deviate from the the predicted values at

small distances. Because we expect the attractive capillary force predicted by
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6.2. Experiments on the behaviour of floating spheres

Eq. (6.1) to be more accurate at far-range, and also since the Reynolds numbers

and capillary numbers in this range are smaller, the fitting was carried out only

using data in far–range, which is shown by the solid curve. For the pair of

interacting particles, the Reynolds number is given by

Re =
v R ρl
µ

, (6.9)

where µ is the dynamic viscosity of the liquid. The capillary number is defined

as

Ca =
µ v

γ
, (6.10)

In the results shown in figure 6.4, the maximum Reynolds number within the

data range that was used for the fitting is 0.09 and the maximum capillary number

in this range is 5.1×10−5. The Reynolds number corresponding to the maximum

velocity in the whole data set is 0.40, and the corresponding capillary number is

2.3 × 10−4. This increase of the Reynolds number and the capillary number at

close range can reduce the accuracy of Eq. (6.5).

The fitting yields the constant CF = 0.0045. Using this value on Eq. (6.8),

along with the contact angle determined in section 6.2.1, we obtain CH = 2145.

6.2.3 Experimental determination of the force of capillary

interaction

By combining Eq. (6.4) and Eq. (6.8) we obtain

F

γ R B5/2 Σ2
=

2π v

CFG(r)
. (6.11)

The left side of this equation is the dimensionless force of capillary attraction.

The fitting of the velocity data was carried out for different particles and the value

of CF was determined for each of them using the method described in the previous

section. Then using Eq. (6.11), the force of capillary interaction was calculated

up to short range. Figure 6.5 compares the results with the asymptotic expression

for the capillary force Eq. (6.1), for particles made with different materials, sizes

and shapes.
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Figure 6.5: Forces of capillary attraction between different particles at a
liquid–air interface, where the liquid is a 50 vol% glycerol solution with ρl =
1126 kg m−3, γ = 68.0 mN m−1, ℓc = 2.48 mm. The forces are calculated using
Eq. (6.11), for which the parameter CF was determined for each type of particle
by fitting the velocity data using the method described in section 6.2.2.2. Sym-
bols show different types of particles: chrome steel spheres with R = 0.1 ℓc and
D = 7.8 (•), sodium chloride crystals with R ≈ 0.16 ℓc andD = 2.2 (∗), rough hy-
drophobic sand with R ≈ 0.12 ℓc andD = 1.5 (◦), Teflon spheres with R = 0.33 ℓc
and D = 2.2 (�). The solid curve is the asymptotic solution (Eq. 6.1) for the
force of attraction between a pair of spheres. The vertical dashed lines show the
centre–to–centre distance where the particles would touch. i.e. d = 2R. The
results show that Eq. (6.11) obtained using the asymptotic result for capillary
attraction and the hydrodynamic interaction is accurate at large inter-particle
separations even for non-spherical particles. However, at small separations, some
particles show deviations from this prediction.
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6.3. Numerical determination of the attraction between floating spheres

Particle type- Remax, all Remax, fitting Camax, all Camax, fitting

Teflon spheres 0.26 0.05 1.5× 10−4 2.7× 10−5

Steel spheres 3.1× 10−3 3.1× 10−3 1.2× 10−5 1.2× 10−5

Hydrophobic sand 0.13 0.03 1.7× 10−4 3.4× 10−5

NaCl crystals 2.4× 10−3 2.4× 10−3 3.1× 10−6 3.1× 10−6

Table 6.1: Maximum Reynolds numbers and capillary numbers of the data
sets plotted in figure 6.5. Remax, all and Camax, all are respectively the maximum
Reynolds number and the maximum capillary number in the whole data set.
Remax, fitting and Camax, fitting are respectively maximum Reynolds number and the
maximum capillary number in the data used for the fitting. For Teflon spheres
and hydrophobic sand, only a subset of long–range data was used for the fitting.

The figure shows that when a pair of particles are sufficiently far apart, the

hydrodynamic interaction predicted by Eq. (6.4) and the capillary attraction

predicted by Eq. (6.1) can explain their overall interaction with a good accuracy.

The results show that this is true even for non-spherical particles. At small inter-

particle separations, deviations from these predictions can be observed for the

Teflon spheres and hydrophobic sand. Table 6.1 gives the maximum Reynolds

numbers for each experiment, and shows that the particles showing deviations

from the asymptotic expressions have high Reynolds numbers. However, with

these results alone, it is not possible to conclude whether it is the expression

for the hydrodynamic interaction or the capillary interaction or the both that

gives rise to these errors. As mentioned earlier, both these expressions involve

simplifications which may give rise to errors at small distance ranges. In order

to find out the real reason for the errors, we carry out an accurate numerical

solution to determine the force of capillary attraction, by solving the nonlinear

Laplace–Young equation.
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Figure 6.6: (a) shows the force of capillary attraction between a pair of spheres
floating at a water–air interface with ρl = 1000 kg m−3, ρf = 0, γ = 72.4 mN m−1,
ℓc = 2.7167 mm. The spheres have R = 0.2209 ℓc, and θ = 70o. As calculated in
section 5.5.2, Dmax ,single = 11.2839. Symbols show spheres with different relative
densities: D = 11.2267 (� – This is the maximum density of a pair of spheres that
can remain floating until they touch, as shown in the data set with lowest density
in the regime diagram figure 5.8), D = 8.0000 (�), D = 5.6419 (◦), D = 3.3852
(∗). The solid curve is the asymptotic solution Eq. (6.1). When the density of the
sphere is close to Dmax ,single , there are significant deviations from the asymptotic
solutions for close range. However, as the density reduces, this deviation becomes
smaller. (b) shows the numerical solution for the force of attraction between a pair
of spheres similar to the Teflon spheres used in the experiment. All parameters
of the particles and the liquid are same as those in the experiment, except the
contact angle, which is used as 135o in the numerical solution. The symbols are
the numerical solution, and the solid curve is the asymptotic solution. Figure
shows that in this range of parameters, the asymptotic solution is accurate even
at very small inter-particle separations.
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6.3. Numerical determination of the attraction between floating spheres

6.3 Numerical determination of the attraction

between floating spheres

The numerical solution in Chapter 5 gives the equilibrium meniscus profile around

a pair of floating spheres. Using this solution, and integration along the contact

line we can calculate the horizontal capillary forces acting on a sphere. The total

horizontal force is given by

Fx = F
(x)
hp + F

(x)
st , (6.12)

where F
(x)
hp and F

(x)
st are the forces resulting from hydrostatic pressure and surface

tension, given by Eq. (5.24) and Eq. (5.30), respectively.

Figure 6.6 (a) shows the numerical solution for the force of attraction between

pairs of floating spherical particles with different densities. When the density of

the sphere approaches the maximum density of a floating sphere (Dmax ,single),

the meniscus slope around it increases, generating a larger surface tension force.

When two such spheres move close to each other, the meniscus slopes further

increase due to their collective behavior. As a result, the assumption of small

meniscus slopes used in deriving the asymptotic solution Eq. (6.1) becomes in-

valid. Therefore, the force of attraction predicted by the numerical solution,

which does not use any such approximation, deviates from the asymptotic pre-

diction.

This effect becomes less and less significant for lower sphere densities, where

they can be supported without the meniscus slope becoming large, even at close

range. As shown in figure 6.6 (b), in the range of parameters used in the exper-

iment for the Teflon spheres, the force of attraction does not deviate from the

asymptotic prediction even at close range.

This shows that Eq. (6.1) gives an accurate prediction for the force of attrac-

tion between the Teflon spheres, and the deviation in figure 6.5 for these particles

must be due some other effect, most likely the inaccuracy of the expression for

the hydrodynamic interaction.
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Figure 6.7: Numerical solution for the interaction between an identical pair of
spheres similar to the Teflon spheres used in the experiment. The figure shows
the ratio between the total area (A) of a sphere and the area wetted by the liquid
(Awet). All parameters of the particles and the liquid are same as those in the
experiment, except for the contact angle which is used as 135o in the numerical
solution. The relative change in the extent of immersion of the spheres during
their movement is very small.

6.4 Limitations of the expression for the hydro-

dynamic interaction

In this section, I present the possible causes that limit the validity of Eq. 6.4,

thereby resulting in a discrepancy between some experimental results and the

asymptotic prediction in figure 6.5. One inaccuracy of this expression can arise

as a result of the parameter CH not being constant as the particles move towards

each other because the volume of a particle submerged in the liquid will depend

on the inter–particle distance. Although this change could not be measured

experimentally, the numerical solution was used to determine how the extent of

immersion of the particles changed as they approached one another. Figure 6.7

shows the ratio between the total area and wetted area of a pair of spheres similar

to the Teflon spheres used in the experiment as a function of their inter–particle

distance. It is evident that the relative change in this ratio is very small, and as
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6.4. Limitations of the expression for the hydrodynamic interaction

a result, we do not expect this to have a significant effect on the hydrodynamic

interaction.

Derivation of Eq. 6.4 also assumes the inertial force to be negligible. (This

force is given by −md̈, where m is the mass of a particle and −d̈ the acceleration

as it approaches another particle.) The validity of this assumption was checked

by evaluating the ratio between the inertial force (Fi) and the capillary force

of attraction (F , from Eq. 6.1) using the experimental data. For the Teflon

spheres, the maximum value of this ratio was found to be (|Fi| /F )max = 0.01.

This evaluation could not be carried out for other types of particles because their

contact angles were unknown. However, the above result suggests neglecting the

inertial force is a reasonable simplification.

As shown in table 6.1, the Reynolds numbers (Re) and capillary numbers

(Ca) increase as the inter–particle distance reduces. This also can result in errors

in the prediction of the hydrodynamic interaction which is only valid for small

values of Re and Ca. However, we note that the relative increases in Re and Ca

observed in the experiments are still small.

The movement of the particle on the liquid surface also causes a surround-

ing curved meniscus region to travel together with it. This can result in an

increased hydrodynamic resistance (Petkov et al., 1995), and a change in the

hydrodynamic interaction between the two spheres. The numerical solution for

the spheres similar to the Teflon particles used in the experiment showed that

the maximum deformation of the liquid surface when the particles are touching

each other was equal to 0.11 ℓc. Although the meniscus slopes were not large

enough for the nonlinear terms of the Laplace–Young equation to have a signif-

icant effect, the meniscus deformations were themselves large, possibly affecting

the hydrodynamic interaction.

Because of the drag force acting on the lower part of the spherical particles,

they can have a rolling motion. The rough particles can also undergo tilting and

rotation as they move towards each other. These effects can complicate their

behaviour. We also note that Eq. 6.4 is strictly valid for spheres, and the non–

spherical geometry of the hydrophobic sand can affect its accuracy, especially at

close–range.
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6.5 Concluding remarks on attraction between

floating particles

By means of particle tracking, the relative velocities of particles at a liquid–air

interface are determined. This data can be explained with sufficient accuracy at

large inter-particle distances using a combination of two expressions: the asymp-

totic solution for capillary attraction between floating spheres (Eq. 6.1) and hy-

drodynamic mobility (Eq. 6.4), even for non–spherical particles. However, at

short range, these predictions fail for some types of particles.

To determine which of the two expressions are responsible for this error, a

numerical solution was carried out to accurately determine the force of capillary

interaction between floating spherical particles. It was found that the asymptotic

expression for the capillary attraction loses its accuracy at close range for large

particle densities i.e. when their densities are close to the maximum density

of a particle that can float. However, for the spherical particles used in our

experiments, no significant deviation between the asymptotic predictions and

numerical solutions are observed. The numerical solution showed that the force of

attraction between these spheres is correctly explained by the asymptotic solution

even at small interparticle separations. This shows that the expression for the

hydrodynamic interaction between pairs of spheres must be giving rise to errors

in this case.
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Chapter 7

Epilogue

7.1 Conclusions

A new numerical solution

As described in Chapter 1, there are a number of published asymptotic solutions

for capillary interaction between objects at liquid interfaces. However, most of

these solutions are based on the assumption that the meniscus slopes are small,

and simplify the problem by linearizing the Laplace–Young equation and using

the linear superposition approximation. The major contribution of this thesis

is a numerical solution that does not assume these simplifications, and accu-

rately solves the fully nonlinear Laplace–Young equation with the appropriate

nonlinear boundary conditions. The numerical solution was developed using the

hp–meshless cloud method, which is a meshfree finite difference method. Addi-

tionally, two approximate analytical solutions are developed, which independently

verify some of the predictions of the numerical results.

Limitations of asymptotic solutions

Asymptotic solutions for the force of attraction between pairs of objects at liquid

interfaces have been already calculated for fixed vertical cylinders with circular

cross section and floating spheres (Chan et al., 1981; Kralchevsky and Nagayama,

2000). Following the method developed in these papers, a new asymptotic solu-

tion for the attraction between vertical cylinders with elliptical cross section was

developed in Chapter 4. The limitations of these solutions were found using the
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numerical solution. It was shown that the asymptotic solutions tend to fail as the

objects approach each other. For vertical cylinders, this deviation increases as

the contact angle deviates from 90o, and for floating spheres, this deviation be-

comes more significant as the density of the spheres become close to the maximum

density of a sphere that can float at the interface without sinking.

Discovery of new phenomena

Using the numerical solution, we also discovered several phenomena that are

not predicted by the existing asymptotic solutions. The failure of the asymptotic

solution in these cases is due to the limitations of the linear superposition approx-

imation – the numerical solution showed that the collective behaviour of objects

at interfaces can be different from the predictions made by combining their be-

haviour in isolation. As an example, the linear superposition technique leads to

the prediction that the interaction between a hydrophilic and a hydrophobic ver-

tical circular cylinder is always repulsive. In Chapter 3, it was shown that this is

in general true at large inter–object separations but the interaction can become

attractive at very small inter–object separations.

More interesting behaviour was identified with floating spheres, as shown in

Chapter 5. Compared to the vertical cylinders, this was a complicated problem

because the vertical positions of the spheres and the horizontal projections of the

contact lines were not known a priori. A new algorithm was developed which

successfully solved this problem. We showed that a sphere that is too dense to

float in isolation may instead float as part of a pair or of a cluster at intermediate

inter–particle distances; we also showed that a sphere that can float in isolation

may sink if it is a part of a pair at small inter–particle distances. In previous

asymptotic solutions regarding a pair of interacting spheres, the equilibrium con-

figuration of an isolated sphere is calculated first, and the meniscus produced

by two such spheres are linearly superimposed upon one another. I developed

a new “semi–analytical” solution for a pair or a cluster of spheres using an im-

proved approach, where both the linear superposition and the determination of

the equilibrium configuration of the spheres are carried out simultaneously. This

produced an equilibrium that depended on the inter–particle distance, and consis-

tently with the numerical solution predicted the floating of highly dense spheres
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at intermediate range. However, this solution still had a linear superposition

component so that it was unable to predict the sinking of the spheres at short

range that is observed in the numerical solutions.

Circular cylinders

In addition to the “semi–analytical” solution, experimental results and new ana-

lytical solutions were employed to independently verify the numerical solutions.

For the force of attraction between circular cylinders, experimental results pub-

lished by other groups disagreed with asymptotic solutions at small inter–object

separations, but matched very well with the numerical solutions at all distance

ranges. These experiments also showed that when a hydrophilic and hydrophobic

cylinder approach one another, the magnitude of their repulsive force of interac-

tion initially increases, and then starts to reduce, matching very well with our

numerical solution. Ultimately, at very short range, this repulsion becomes an

attraction as seen in our simulations.

Elliptical cylinders

The versatility of the numerical solution enabled its extension to solve prob-

lems involving anisotropic objects, namely elliptical cylinders, which is described

in Chapter 4. A new analytical solution was also developed for this problem by

solving for the the meniscus shape around an isolated cylinder using elliptic cylin-

drical coordinates, and then using linear superposition to calculate the forces of

attraction. For isolated elliptical cylinders, both solutions gave very similar con-

tact line and meniscus profiles even when the ratio between the major and minor

axes was larger than 27. Both solutions showed that the force of interaction was

orientation–dependent and that the force in the tip–to–tip orientation was larger

than that in the side–to–side orientation. However, this orientation–dependence

becomes significant only at short range (i.e. inter–object distances that are small

compared to the capillary length for large cylinders and major axis for small

cylinders). This is the same distance range where the analytical solutions start

to fail as already mentioned. Therefore, exact agreement between the numerical

and analytical results are not observed for the anisotropic interactions. It was

also shown that at large distances away from an isolated elliptical cylinder, the
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shape of the meniscus was found to be asymptotically equivalent to one created

by a circular cylinder with the same perimeter as that of the elliptical cylinder. It

was also shown that the force of attraction between a pair of elliptical cylinders at

long range was equal to the force of attraction between these “effective” circular

cylinders.

Experiments on spheres

We carried out experiments to measure the force of attraction between floating

spheres in Chapter 6. These experiments also showed deviations from the asymp-

totic solutions at close–range. However, the force inferred from the experimental

results also depended on an approximate expression for the hydrodynamic in-

teraction between the spheres. Our numerical simulations showed that for the

moderate sphere densities used in these experiments, significant deviations from

the asymptotic results are not expected. This suggests that it is the inaccuracy

of the expression for the hydrodynamic interaction that leads to the deviations

in the measured force compared to that computed.

7.2 Outlook

The results presented here open the door to a wide range of future analyses of

capillary interaction. The interaction between a pair of vertical circular cylinders

was studied in Chapter 3. With respect to “real” scenarios of self assembly, it

would be interesting to understand the behaviour of three cylinders, in particular

when two cylinders are in fixed positions, what force will a third cylinder feel while

approaching them? One would generally expect that this force can be calculated

by linear superposition at far–range, but the results in Chapter 3 suggest that

there will be deviations at close–range. Moreover, these deviations may occur not

only in the magnitude, but also in the direction of the force, and the numerical

solution will enable discovery of such new behaviour. A study of this nature

would be the first step towards a more rigorous understanding of the structure

of capillary aggregates, which have often been supposed to have a fractal nature

(Hórvölgyi et al., 1991).

In Chapter 4, we introduced the “effective” radius of a circular cylinder that
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approximates the meniscus created by an elliptical cylinder at far–range. It was

also shown that the effective circular cylinder had approximately the same perime-

ter as the elliptical cylinder. It is important to determine whether this simple

relationship is also valid for non–elliptical shapes with complex cross sections;

such a relationship would be very useful for objects for which analytical solutions

are hard to derive. This can be checked by determining the meniscus shapes

around such objects by means of the numerical solution method developed in

this thesis.

Rapacchietta and Neumann (1977) have shown that a floating isolated sphere

can have two equilibrium positions but that only one of them is stable. The study

of the interaction between pairs of spheres in Chapter 5 was limited to identical

pairs and we found only one stable equilibrium for a given inter–particle distance.

However, for a pair of non–identical spheres there can be more than one stable

equilibrium, giving rise to different floating behaviours and forces of interaction.

In Chapter 5, the floating and sinking of clusters of spheres was also studied.

These clusters were infinite in size, and it would be interesting to understand

the floating behaviour of clusters of finite size. This will enable carrying out

simple experiments to verify the numerical results. The possibility of carrying out

experiments to verify data in the floating and sinking regime diagram (figure 5.8)

for a pair of spheres is limited by the fact that the intermediate–range floating

and close–range sinking regimes are spread only across a narrow density range.

These density ranges depend on the parameters of the spheres, liquid, and the

fluid. By varying these parameters, it may be possible to identify a combination

where the density ranges involving the new phenomena is wide enough to be

experimentally accessible.

Since it is relatively hard to carry our the above experiment using a range of

densities for the spheres, I propose a simpler method of experimentally realizing

the collective behaviour of spheres at a liquid-fluid interface. Instead of making

the spheres sink, this experiment involves pulling them out of a liquid–air interface

as shown in figure 7.1. Two identical spheres are connected horizontally at a

fixed distance using a rigid connector, and they are slowly pulled upwards from

the liquid surface using a string attached to a balance. In the vertical direction,

the spheres are affected by 4 forces: weight (Fw), surface tension force (Fst)
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Fe

Fw+F +Fst hp Fw+F +Fst hp
liquid

air

Figure 7.1: A simple experiment to demonstrate that the ability of a particle to
remain at a liquid–fluid interface can be affected by the presence of other particles
close by. A pair of identical spheres are held at a fixed distance apart with a
rigid connector, and they are attached to a liquid–air interface. They slowly are
pulled upwards using a string attached to a balance until they separate from
the interface. The force exerted by the balance (Fe) is continuously recorded.
The maximum value of Fe is equal to the maximum force collectively exerted
downwards by surface tension (Fst), hydrostatic pressure (Fhp) and particle weight
(Fw). The experiment is repeated for a range of inter–particle distances, and
also carried out using an isolated particle. This data can be used to create
an experimental regime diagram showing the maximum external force a pair of
particles can support without separating from the liquid–air interface.

and hydrostatic pressure force (Fhp) which act downwards, and the force exerted

upwards by the balance (Fe).

Fe changes as the pair of spheres move upwards, and the maximum of this

value Fe,max ,pair is recorded. This corresponds to the maximum vertical force

exerted by the combination of surface tension and hydrostatic pressure. This

is very similar to the point of sinking in the scenarios considered in Chapter 5.

Fe,max ,pair obtained for a pair of spheres at variable inter–particle distances can

be then compared with Fe,max ,isolated , which is the maximum value of Fe obtained

by repeating this experiment for an isolated sphere. Fe,max ,isolated can also be used

to calculate the contact angle (θ) making use of the fact that this corresponds to
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the maximum of Fst +Fhp which are both functions of θ. Once θ is known, theo-

retical predictions for Fe,max ,pair can be made using numerical or semi–analytical

approaches similar to those described in Chapter 5

The experiments on the force of attraction between floating spheres presented

in Chapter 6 can be further improved by measuring the contact angles of both

types of spherical particles that were used. An accurate (numerical) solution for

the hydrodynamic interaction between these particles may allow us to interpret

the experimental data better.

Extension of the numerical method and Algorithm 1 presented in Chapter 5

to solve for floating anisotropic objects such as spheroids will enable discovery

of a wide range of new phenomena. In doing this, the torque balance and the

rotation of the objects will need to be considered. In addition to the floating and

sinking behaviour, this will also provide insight into the structures produced by

self–assembly of the anisotropic objects.
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